IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v41y2015icp1277-1287.html
   My bibliography  Save this article

Sustainable options for electric vehicle technologies

Author

Listed:
  • Poullikkas, Andreas

Abstract

In this work, an overview regarding electric vehicle technologies and associated charging mechanisms is carried out. The review covers a broad range of topics related to electric vehicles, such as the basic types of these vehicles and their technical characteristics, fuel economy and CO2 emissions, the electric vehicle charging mechanisms and the notions of grid to vehicle and vehicle to grid architectures. In particular three main types of electric vehicles, namely, the hybrid electric vehicles (HEVs), the plug-in electric vehicles (PHEVs) and the full electric vehicles (FEVs) are discussed in detailed. The major difference between these types of vehicles is that for the last two types, the battery can be externally recharged. In addition, FEVs operate only on battery charge and therefore always employ the charge depleting mode of operation requiring high power, high energy battery packs. On the other hand, PHEVs offer the possibility of on-board battery charging and the option of charge depleting or charge sustaining modes of operation. Finally HEVs, which were the first type of electric vehicles to be manufactured, offer higher travelling range compared to PHEVs and FEVs due to the existence of the internal combustion engine. Although tank-to-wheel efficiencies of electric vehicles show that they have higher fuel economies than conventional gasoline vehicles, the well-to-wheel efficiency is a more appropriate measure to use for comparing fuel economy and CO2 emissions in order to account for the effect of electricity consumption from these vehicles. From the perspective of a full cycle analysis, the electricity available to recharge the batteries must be generated from renewable or clean sources in order for such vehicles to have zero emissions. On the other hand, when electric vehicles are recharged from electricity produced from conventional technology power plants such as oil or coal-fired plants, they may produce equal or sometimes more greenhouse gas emissions than conventional gasoline vehicles.

Suggested Citation

  • Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
  • Handle: RePEc:eee:rensus:v:41:y:2015:i:c:p:1277-1287
    DOI: 10.1016/j.rser.2014.09.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114007898
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.09.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tseng, Hui-Kuan & Wu, Jy S. & Liu, Xiaoshuai, 2013. "Affordability of electric vehicles for a sustainable transport system: An economic and environmental analysis," Energy Policy, Elsevier, vol. 61(C), pages 441-447.
    2. Hannan, M.A. & Azidin, F.A. & Mohamed, A., 2014. "Hybrid electric vehicles and their challenges: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 135-150.
    3. Xiong, Rui & Sun, Fengchun & Gong, Xianzhi & Gao, Chenchen, 2014. "A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 1421-1433.
    4. Robinson, A.P. & Blythe, P.T. & Bell, M.C. & Hübner, Y. & Hill, G.A., 2013. "Analysis of electric vehicle driver recharging demand profiles and subsequent impacts on the carbon content of electric vehicle trips," Energy Policy, Elsevier, vol. 61(C), pages 337-348.
    5. Andersen, Poul H. & Mathews, John A. & Rask, Morten, 2009. "Integrating private transport into renewable energy policy: The strategy of creating intelligent recharging grids for electric vehicles," Energy Policy, Elsevier, vol. 37(7), pages 2481-2486, July.
    6. Galus, Matthias D. & Zima, Marek & Andersson, Göran, 2010. "On integration of plug-in hybrid electric vehicles into existing power system structures," Energy Policy, Elsevier, vol. 38(11), pages 6736-6745, November.
    7. Yabe, Kuniaki & Shinoda, Yukio & Seki, Tomomichi & Tanaka, Hideo & Akisawa, Atsushi, 2012. "Market penetration speed and effects on CO2 reduction of electric vehicles and plug-in hybrid electric vehicles in Japan," Energy Policy, Elsevier, vol. 45(C), pages 529-540.
    8. Gass, V. & Schmidt, J. & Schmid, E., 2014. "Analysis of alternative policy instruments to promote electric vehicles in Austria," Renewable Energy, Elsevier, vol. 61(C), pages 96-101.
    9. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries," Energy Policy, Elsevier, vol. 39(2), pages 803-811, February.
    10. Jargstorf, Johannes & Wickert, Manuel, 2013. "Offer of secondary reserve with a pool of electric vehicles on the German market," Energy Policy, Elsevier, vol. 62(C), pages 185-195.
    11. Kiviluoma, Juha & Meibom, Peter, 2011. "Methodology for modelling plug-in electric vehicles in the power system and cost estimates for a system with either smart or dumb electric vehicles," Energy, Elsevier, vol. 36(3), pages 1758-1767.
    12. Sathaye, Nakul & Kelley, Scott, 2013. "An approach for the optimal planning of electric vehicle infrastructure for highway corridors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 59(C), pages 15-33.
    13. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    14. Wager, Guido & McHenry, Mark P. & Whale, Jonathan & Bräunl, Thomas, 2014. "Testing energy efficiency and driving range of electric vehicles in relation to gear selection," Renewable Energy, Elsevier, vol. 62(C), pages 303-312.
    15. Torres, J.L. & Gonzalez, R. & Gimenez, A. & Lopez, J., 2014. "Energy management strategy for plug-in hybrid electric vehicles. A comparative study," Applied Energy, Elsevier, vol. 113(C), pages 816-824.
    16. Driscoll, Áine & Lyons, Seán & Mariuzzo, Franco & Tol, Richard S.J., 2013. "Simulating demand for electric vehicles using revealed preference data," Energy Policy, Elsevier, vol. 62(C), pages 686-696.
    17. Karabasoglu, Orkun & Michalek, Jeremy, 2013. "Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains," Energy Policy, Elsevier, vol. 60(C), pages 445-461.
    18. Catenacci, Michela & Verdolini, Elena & Bosetti, Valentina & Fiorese, Giulia, 2013. "Going electric: Expert survey on the future of battery technologies for electric vehicles," Energy Policy, Elsevier, vol. 61(C), pages 403-413.
    19. Lin, Chengtao & Wu, Tian & Ou, Xunmin & Zhang, Qian & Zhang, Xu & Zhang, Xiliang, 2013. "Life-cycle private costs of hybrid electric vehicles in the current Chinese market," Energy Policy, Elsevier, vol. 55(C), pages 501-510.
    20. Carillo-Aparicio, Susana & Heredia-Larrubia, Juan R. & Perez-Hidalgo, Francisco, 2013. "SmartCity Málaga, a real-living lab and its adaptation to electric vehicles in cities," Energy Policy, Elsevier, vol. 62(C), pages 774-779.
    21. Brown, Stephen & Pyke, David & Steenhof, Paul, 2010. "Electric vehicles: The role and importance of standards in an emerging market," Energy Policy, Elsevier, vol. 38(7), pages 3797-3806, July.
    22. Smith, William J., 2010. "Plug-in hybrid electric vehicles--A low-carbon solution for Ireland?," Energy Policy, Elsevier, vol. 38(3), pages 1485-1499, March.
    23. Sioshansi, Ramteen & Miller, Jacob, 2011. "Plug-in hybrid electric vehicles can be clean and economical in dirty power systems," Energy Policy, Elsevier, vol. 39(10), pages 6151-6161, October.
    24. Smith, William J., 2010. "Can EV (electric vehicles) address Ireland’s CO2 emissions from transport?," Energy, Elsevier, vol. 35(12), pages 4514-4521.
    25. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    26. Wang, Ying-Wei & Lin, Chuah-Chih, 2013. "Locating multiple types of recharging stations for battery-powered electric vehicle transport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 58(C), pages 76-87.
    27. Han, Sekyung & Han, Soohee & Aki, Hirohisa, 2014. "A practical battery wear model for electric vehicle charging applications," Applied Energy, Elsevier, vol. 113(C), pages 1100-1108.
    28. Sovacool, Benjamin K. & Hirsh, Richard F., 2009. "Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition," Energy Policy, Elsevier, vol. 37(3), pages 1095-1103, March.
    29. Franke, Thomas & Krems, Josef F., 2013. "What drives range preferences in electric vehicle users?," Transport Policy, Elsevier, vol. 30(C), pages 56-62.
    30. Amjad, Shaik & Neelakrishnan, S. & Rudramoorthy, R., 2010. "Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1104-1110, April.
    31. Cipek, Mihael & Pavković, Danijel & Petrić, Joško, 2013. "A control-oriented simulation model of a power-split hybrid electric vehicle," Applied Energy, Elsevier, vol. 101(C), pages 121-133.
    32. Wang, Jianhui & Liu, Cong & Ton, Dan & Zhou, Yan & Kim, Jinho & Vyas, Anantray, 2011. "Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power," Energy Policy, Elsevier, vol. 39(7), pages 4016-4021, July.
    33. Hein, Robert & Kleindorfer, Paul R. & Spinler, Stefan, 2012. "Valuation of electric vehicle batteries in vehicle-to-grid and battery-to-grid systems," Technological Forecasting and Social Change, Elsevier, vol. 79(9), pages 1654-1671.
    34. Khayyam, Hamid & Abawajy, Jemal & Javadi, Bahman & Goscinski, Andrzej & Stojcevski, Alex & Bab-Hadiashar, Alireza, 2013. "Intelligent battery energy management and control for vehicle-to-grid via cloud computing network," Applied Energy, Elsevier, vol. 111(C), pages 971-981.
    35. Hennings, Wilfried & Mischinger, Stefan & Linssen, Jochen, 2013. "Utilization of excess wind power in electric vehicles," Energy Policy, Elsevier, vol. 62(C), pages 139-144.
    36. Davies, Jamie & Kurani, Kenneth S., 2013. "Moving from assumption to observation: Implications for energy and emissions impacts of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 62(C), pages 550-560.
    37. He, Yiming & Chowdhury, Mashrur & Ma, Yongchang & Pisu, Pierluigi, 2012. "Merging mobility and energy vision with hybrid electric vehicles and vehicle infrastructure integration," Energy Policy, Elsevier, vol. 41(C), pages 599-609.
    38. Green II, Robert C. & Wang, Lingfeng & Alam, Mansoor, 2011. "The impact of plug-in hybrid electric vehicles on distribution networks: A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 544-553, January.
    39. Mullan, Jonathan & Harries, David & Bräunl, Thomas & Whitely, Stephen, 2012. "The technical, economic and commercial viability of the vehicle-to-grid concept," Energy Policy, Elsevier, vol. 48(C), pages 394-406.
    40. Saarenpää, Jukka & Kolehmainen, Mikko & Niska, Harri, 2013. "Geodemographic analysis and estimation of early plug-in hybrid electric vehicle adoption," Applied Energy, Elsevier, vol. 107(C), pages 456-464.
    41. Marshall, Brandon M. & Kelly, Jarod C. & Lee, Tae-Kyung & Keoleian, Gregory A. & Filipi, Zoran, 2013. "Environmental assessment of plug-in hybrid electric vehicles using naturalistic drive cycles and vehicle travel patterns: A Michigan case study," Energy Policy, Elsevier, vol. 58(C), pages 358-370.
    42. Lunz, Benedikt & Yan, Zexiong & Gerschler, Jochen Bernhard & Sauer, Dirk Uwe, 2012. "Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs," Energy Policy, Elsevier, vol. 46(C), pages 511-519.
    43. Hirte, Georg & Tscharaktschiew, Stefan, 2013. "The optimal subsidy on electric vehicles in German metropolitan areas: A spatial general equilibrium analysis," Energy Economics, Elsevier, vol. 40(C), pages 515-528.
    44. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    2. Arslan, Okan & Yıldız, Barış & Ekin Karaşan, Oya, 2014. "Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips," Energy Policy, Elsevier, vol. 74(C), pages 168-178.
    3. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    4. García-Villalobos, J. & Zamora, I. & San Martín, J.I. & Asensio, F.J. & Aperribay, V., 2014. "Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 717-731.
    5. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    6. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    7. Wang, Yachao & Wen, Yi & Zhu, Qinggong & Luo, Jiaxin & Yang, Zhengjun & Su, Sheng & Wang, Xin & Hao, Lijun & Tan, Jianwei & Yin, Hang & Ge, Yunshan, 2022. "Real driving energy consumption and CO2 & pollutant emission characteristics of a parallel plug-in hybrid electric vehicle under different propulsion modes," Energy, Elsevier, vol. 244(PB).
    8. Calise, Francesco & Cappiello, Francesco Liberato & Cartenì, Armando & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2019. "A novel paradigm for a sustainable mobility based on electric vehicles, photovoltaic panels and electric energy storage systems: Case studies for Naples and Salerno (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 97-114.
    9. Larson, Paul D. & Viáfara, Jairo & Parsons, Robert V. & Elias, Arne, 2014. "Consumer attitudes about electric cars: Pricing analysis and policy implications," Transportation Research Part A: Policy and Practice, Elsevier, vol. 69(C), pages 299-314.
    10. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Raslavičius, Laurencas & Azzopardi, Brian & Keršys, Artūras & Starevičius, Martynas & Bazaras, Žilvinas & Makaras, Rolandas, 2015. "Electric vehicles challenges and opportunities: Lithuanian review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 786-800.
    12. Wu, Geng & Inderbitzin, Alessandro & Bening, Catharina, 2015. "Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments," Energy Policy, Elsevier, vol. 80(C), pages 196-214.
    13. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    14. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    15. Hota, Ashish Ranjan & Juvvanapudi, Mahesh & Bajpai, Prabodh, 2014. "Issues and solution approaches in PHEV integration to smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 217-229.
    16. Khardenavis, Amaiya & Hewage, Kasun & Perera, Piyaruwan & Shotorbani, Amin Mohammadpour & Sadiq, Rehan, 2021. "Mobile energy hub planning for complex urban networks: A robust optimization approach," Energy, Elsevier, vol. 235(C).
    17. Torres, J.L. & Gonzalez, R. & Gimenez, A. & Lopez, J., 2014. "Energy management strategy for plug-in hybrid electric vehicles. A comparative study," Applied Energy, Elsevier, vol. 113(C), pages 816-824.
    18. Thomas J.T. Van der Wardt & Amro M. Farid, 2017. "A Hybrid Dynamic System Assessment Methodology for Multi-Modal Transportation-Electrification," Energies, MDPI, vol. 10(5), pages 1-25, May.
    19. Amirioun, Mohammad Hassan & Kazemi, Ahad, 2014. "A new model based on optimal scheduling of combined energy exchange modes for aggregation of electric vehicles in a residential complex," Energy, Elsevier, vol. 69(C), pages 186-198.
    20. Krupa, Joseph S. & Rizzo, Donna M. & Eppstein, Margaret J. & Brad Lanute, D. & Gaalema, Diann E. & Lakkaraju, Kiran & Warrender, Christina E., 2014. "Analysis of a consumer survey on plug-in hybrid electric vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 14-31.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:41:y:2015:i:c:p:1277-1287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.