IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v101y2013icp121-133.html
   My bibliography  Save this article

A control-oriented simulation model of a power-split hybrid electric vehicle

Author

Listed:
  • Cipek, Mihael
  • Pavković, Danijel
  • Petrić, Joško

Abstract

A simulation model of a two mode power-split hybrid electric vehicle (HEV) is proposed in this paper for the purpose of HEV dynamics analysis and control system design. The bond graph methodology is used to model dominant dynamic effects of the mechanical part of the HEV transmission. Simple quasi-static battery model, the environment model, the tire and the power losses model of a vehicle are included, as well. A low-level electric generator speed control loop is designed, which includes a PI controller tuned according to the symmetrical optimum tuning procedure. Finally, off-line optimization by conjugate gradient-based BPTT-like optimal control algorithm, which is based on the presented mathematical model, is also given in the paper.

Suggested Citation

  • Cipek, Mihael & Pavković, Danijel & Petrić, Joško, 2013. "A control-oriented simulation model of a power-split hybrid electric vehicle," Applied Energy, Elsevier, vol. 101(C), pages 121-133.
  • Handle: RePEc:eee:appene:v:101:y:2013:i:c:p:121-133
    DOI: 10.1016/j.apenergy.2012.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912005181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Huang, K. & Tzeng, Sheng-Chung, 2004. "A new parallel-type hybrid electric-vehicle," Applied Energy, Elsevier, vol. 79(1), pages 51-64, September.
    2. Rambaldi, Lorenzo & Bocci, Enrico & Orecchini, Fabio, 2011. "Preliminary experimental evaluation of a four wheel motors, batteries plus ultracapacitors and series hybrid powertrain," Applied Energy, Elsevier, vol. 88(2), pages 442-448, February.
    3. N/A, 2004. "The World Economy," National Institute Economic Review, National Institute of Economic and Social Research, vol. 187(1), pages 8-35, January.
    4. N/A, 2004. "The World Economy," National Institute Economic Review, National Institute of Economic and Social Research, vol. 189(1), pages 8-36, July.
    5. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions," Applied Energy, Elsevier, vol. 88(7), pages 2315-2323, July.
    6. N/A, 2004. "The World Economy," National Institute Economic Review, National Institute of Economic and Social Research, vol. 188(1), pages 8-35, April.
    7. Sheu, Kuen-Bao, 2008. "Simulation for the analysis of a hybrid electric scooter powertrain," Applied Energy, Elsevier, vol. 85(7), pages 589-606, July.
    8. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    9. Wu, Xiaolan & Cao, Binggang & Li, Xueyan & Xu, Jun & Ren, Xiaolong, 2011. "Component sizing optimization of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 88(3), pages 799-804, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hutchinson, Tim & Burgess, Stuart & Herrmann, Guido, 2014. "Current hybrid-electric powertrain architectures: Applying empirical design data to life cycle assessment and whole-life cost analysis," Applied Energy, Elsevier, vol. 119(C), pages 314-329.
    2. Marelli, Silvia & Capobianco, Massimo, 2011. "Steady and pulsating flow efficiency of a waste-gated turbocharger radial flow turbine for automotive application," Energy, Elsevier, vol. 36(1), pages 459-465.
    3. Finesso, Roberto & Spessa, Ezio & Venditti, Mattia, 2016. "Cost-optimized design of a dual-mode diesel parallel hybrid electric vehicle for several driving missions and market scenarios," Applied Energy, Elsevier, vol. 177(C), pages 366-383.
    4. Commendatore, Pasquale & Kubin, Ingrid & Petraglia, Carmelo & Sushko, Iryna, 2014. "Regional integration, international liberalisation and the dynamics of industrial agglomeration," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 265-287.
    5. Claudio Rossi & Davide Pontara & Carlo Falcomer & Marco Bertoldi & Riccardo Mandrioli, 2021. "A Hybrid–Electric Driveline for Agricultural Tractors Based on an e-CVT Power-Split Transmission," Energies, MDPI, vol. 14(21), pages 1-23, October.
    6. Mar�a C. Latorre, 2012. "Industry restructuring in transition after the arrival of multinationals: a general equilibrium analysis with firm-type costs differences," Post-Communist Economies, Taylor & Francis Journals, vol. 24(4), pages 441-463, June.
    7. De Filippo, Giovanni & Marano, Vincenzo & Sioshansi, Ramteen, 2014. "Simulation of an electric transportation system at The Ohio State University," Applied Energy, Elsevier, vol. 113(C), pages 1686-1691.
    8. Verma, Anoop & Asadi, Ali & Yang, Kai & Tyagi, Satish, 2015. "A data-driven approach to identify households with plug-in electrical vehicles (PEVs)," Applied Energy, Elsevier, vol. 160(C), pages 71-79.
    9. Hung, Yi-Hsuan & Wu, Chien-Hsun, 2015. "A combined optimal sizing and energy management approach for hybrid in-wheel motors of EVs," Applied Energy, Elsevier, vol. 139(C), pages 260-271.
    10. Fiori, Chiara & Ahn, Kyoungho & Rakha, Hesham A., 2016. "Power-based electric vehicle energy consumption model: Model development and validation," Applied Energy, Elsevier, vol. 168(C), pages 257-268.
    11. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    12. Hou, Cong & Ouyang, Minggao & Xu, Liangfei & Wang, Hewu, 2014. "Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 115(C), pages 174-189.
    13. Yixing Chen & Deqing Huang & Qiao Zhu & Weiqun Liu & Congzhi Liu & Neng Xiong, 2017. "A New State of Charge Estimation Algorithm for Lithium-Ion Batteries Based on the Fractional Unscented Kalman Filter," Energies, MDPI, vol. 10(9), pages 1-19, September.
    14. Hu, Xiaosong & Murgovski, Nikolce & Johannesson, Lars & Egardt, Bo, 2013. "Energy efficiency analysis of a series plug-in hybrid electric bus with different energy management strategies and battery sizes," Applied Energy, Elsevier, vol. 111(C), pages 1001-1009.
    15. Walker, Paul D. & Roser, Holger M., 2015. "Energy consumption and cost analysis of hybrid electric powertrain configurations for two wheelers," Applied Energy, Elsevier, vol. 146(C), pages 279-287.
    16. Hung, Yi-Hsuan & Wu, Chien-Hsun, 2012. "An integrated optimization approach for a hybrid energy system in electric vehicles," Applied Energy, Elsevier, vol. 98(C), pages 479-490.
    17. Shabashevich, A. & Richards, N. & Hwang, J. & Erickson, P.A., 2015. "Analysis of powertrain design on effective waste heat recovery from conventional and hybrid electric vehicles," Applied Energy, Elsevier, vol. 157(C), pages 754-761.
    18. Shuaishuai Zhang & Youhong Wan & Jie Ding & Yangyang Da, 2021. "State of Charge (SOC) Estimation Based on Extended Exponential Weighted Moving Average H ∞ Filtering," Energies, MDPI, vol. 14(6), pages 1-15, March.
    19. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    20. Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:101:y:2013:i:c:p:121-133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.