IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v146y2015icp279-287.html
   My bibliography  Save this article

Energy consumption and cost analysis of hybrid electric powertrain configurations for two wheelers

Author

Listed:
  • Walker, Paul D.
  • Roser, Holger M.

Abstract

The development of hybrid electric two wheelers in recent years has targeted the reduction of on road emissions produced by these vehicles. However, added cost and complexity have resulted in the failure of these systems to meet consumer expectations. This paper presents a comparative study of the energy economy and essential costs of alternative forms of small two wheelers such as scooters or low capacity motorcycles. This includes conventional, hybrid, plug-in hybrid and electric variants. Through simulations of vehicle driving range using two popular driving cycles it is demonstrated that there is considerable benefit in fuel economy realised by hybridising such vehicles. However, the added costs associated with electrification, i.e. motor/generator, power electronics, and energy storage provide a significant cost obstacle to the purchase of such vehicles. Only the pure electric configuration is demonstrated to be cost effective over its life in comparison to conventional two wheelers. Both the hybrid electric and plug-in equivalents must overcome significant upfront costs to be cost competitive with conventional vehicles. This is demonstrated to be achieved if the annual driving range of the vehicle is increased substantially from the assumed mean. Given the shorter distances travelled by most two wheeler drivers it can therefore be concluded that the development of similar hybrid electric vehicles are unlikely to achieve the desired acceptance that pure electric or conventional equivalents currently achieve.

Suggested Citation

  • Walker, Paul D. & Roser, Holger M., 2015. "Energy consumption and cost analysis of hybrid electric powertrain configurations for two wheelers," Applied Energy, Elsevier, vol. 146(C), pages 279-287.
  • Handle: RePEc:eee:appene:v:146:y:2015:i:c:p:279-287
    DOI: 10.1016/j.apenergy.2015.02.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915001774
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.02.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Huang, K. & Tzeng, Sheng-Chung, 2004. "A new parallel-type hybrid electric-vehicle," Applied Energy, Elsevier, vol. 79(1), pages 51-64, September.
    2. Amjad, Shaik & Rudramoorthy, R. & Neelakrishnan, S. & Sri Raja Varman, K. & Arjunan, T.V., 2011. "Evaluation of energy requirements for all-electric range of plug-in hybrid electric two-wheeler," Energy, Elsevier, vol. 36(3), pages 1623-1629.
    3. Cherry, Christopher R. & Weinert, Jonathan X. & Yang, Xinmiao, 2009. "Comparative Environmental Impacts of Electric Bikes in China," Institute of Transportation Studies, Working Paper Series qt16k918sh, Institute of Transportation Studies, UC Davis.
    4. Ximing Wang & Hongwen He & Fengchun Sun & Xiaokun Sun & Henglu Tang, 2013. "Comparative Study on Different Energy Management Strategies for Plug-In Hybrid Electric Vehicles," Energies, MDPI, vol. 6(11), pages 1-20, October.
    5. Sheu, Kuen-Bao & Hsu, Tsung-Hua, 2006. "Design and implementation of a novel hybrid-electric-motorcycle transmission," Applied Energy, Elsevier, vol. 83(9), pages 959-974, September.
    6. Sheu, Kuen-Bao, 2008. "Simulation for the analysis of a hybrid electric scooter powertrain," Applied Energy, Elsevier, vol. 85(7), pages 589-606, July.
    7. Weinert, Jonathan X. & Ogden, Joan M. & Sperling, Dan & Burke, Andy, 2008. "The future of electric two-wheelers and electric vehicles in China," Institute of Transportation Studies, Working Paper Series qt0d05f8v9, Institute of Transportation Studies, UC Davis.
    8. Weinert, Jonathan & Ogden, Joan & Sperling, Dan & Burke, Andrew, 2008. "The future of electric two-wheelers and electric vehicles in China," Energy Policy, Elsevier, vol. 36(7), pages 2544-2555, July.
    9. Hwang, Jenn Jiang, 2010. "Sustainable transport strategy for promoting zero-emission electric scooters in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1390-1399, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhuang, Weichao & Zhang, Xiaowu & Li, Daofei & Wang, Liangmo & Yin, Guodong, 2017. "Mode shift map design and integrated energy management control of a multi-mode hybrid electric vehicle," Applied Energy, Elsevier, vol. 204(C), pages 476-488.
    2. Štefan Bojnec & Alan Križaj, 2021. "Electricity Markets during the Liberalization: The Case of a European Union Country," Energies, MDPI, vol. 14(14), pages 1-21, July.
    3. Cox, Brian L. & Mutel, Christopher L., 2018. "The environmental and cost performance of current and future motorcycles," Applied Energy, Elsevier, vol. 212(C), pages 1013-1024.
    4. Aree Wangsupphaphol & Surachai Chaitusaney, 2022. "Subsidizing Residential Low Priority Smart Charging: A Power Management Strategy for Electric Vehicle in Thailand," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
    5. Baodi Zhang & Fuyuan Yang & Lan Teng & Minggao Ouyang & Kunfang Guo & Weifeng Li & Jiuyu Du, 2019. "Comparative Analysis of Technical Route and Market Development for Light-Duty PHEV in China and the US," Energies, MDPI, vol. 12(19), pages 1-23, September.
    6. Anna Brdulak & Grażyna Chaberek & Jacek Jagodziński, 2020. "Determination of Electricity Demand by Personal Light Electric Vehicles (PLEVs): An Example of e-Motor Scooters in the Context of Large City Management in Poland," Energies, MDPI, vol. 13(1), pages 1-18, January.
    7. Hao, Xu & Lin, Zhenhong & Wang, Hewu & Ou, Shiqi & Ouyang, Minggao, 2020. "Range cost-effectiveness of plug-in electric vehicle for heterogeneous consumers: An expanded total ownership cost approach," Applied Energy, Elsevier, vol. 275(C).
    8. Lei, Fei & Du, Bin & Liu, Xin & Xie, Xiaoping & Chai, Tian, 2016. "Optimization of an implicit constrained multi-physics system for motor wheels of electric vehicle," Energy, Elsevier, vol. 113(C), pages 980-990.
    9. Gong, Jun & Zhang, Daqing & Guo, yong & Liu, Changsheng & Zhao, Yuming & Hu, Peng & Quan, weicai, 2019. "Power control strategy and performance evaluation of a novel electro-hydraulic energy-saving system," Applied Energy, Elsevier, vol. 233, pages 724-734.
    10. Shoki Kosai & Sazalina Zakaria & Hang Seng Che & Md Hasanuzzaman & Nasrudin Abd Rahim & Chiakwang Tan & Radin Diana R. Ahmad & Ahmad Rosly Abbas & Katsuyuki Nakano & Eiji Yamasue & Wei Kian Woon & Amm, 2022. "Estimation of Greenhouse Gas Emissions of Petrol, Biodiesel and Battery Electric Vehicles in Malaysia Based on Life Cycle Approach," Sustainability, MDPI, vol. 14(10), pages 1-12, May.
    11. Sun, Lishan & Huang, Yuchen & Liu, Shuli & Chen, Yanyan & Yao, Liya & Kashyap, Anil, 2017. "A completive survey study on the feasibility and adaptation of EVs in Beijing, China," Applied Energy, Elsevier, vol. 187(C), pages 128-139.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kishimoto, Paul N. & Zhang, Da & Zhang, Xiliang & Karplus, Valerie J., 2013. "Modeling regional transportation demand in China and the impacts of a national carbon constraint," Conference papers 332390, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
    2. Wells, Peter & Lin, Xiao, 2015. "Spontaneous emergence versus technology management in sustainable mobility transitions: Electric bicycles in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 371-383.
    3. Geoffrey Rose, 2012. "E-bikes and urban transportation: emerging issues and unresolved questions," Transportation, Springer, vol. 39(1), pages 81-96, January.
    4. Jago Dodson, 2014. "Suburbia under an Energy Transition: A Socio-technical Perspective," Urban Studies, Urban Studies Journal Limited, vol. 51(7), pages 1487-1505, May.
    5. Tian, Xi & Gong, Yu & Wu, Yufeng & Agyeiwaa, Amma & Zuo, Tieyong, 2014. "Management of used lead acid battery in China: Secondary lead industry progress, policies and problems," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 75-84.
    6. Gihan Ekanayake & Mahesh Suresh Patil & Jae-Hyeong Seo & Moo-Yeon Lee, 2018. "Numerical Study on Heat Transfer Characteristics of the 36V Electronic Control Unit System for an Electric Bicycle," Energies, MDPI, vol. 11(10), pages 1-17, September.
    7. Ou, Shiqi & Hao, Xu & Lin, Zhenhong & Wang, Hewu & Bouchard, Jessey & He, Xin & Przesmitzki, Steven & Wu, Zhixin & Zheng, Jihu & Lv, Renzhi & Qi, Liang & LaClair, Tim J., 2019. "Light-duty plug-in electric vehicles in China: An overview on the market and its comparisons to the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 747-761.
    8. Chen, Ching-Fu & Eccarius, Timo & Su, Pin-Chi, 2021. "The role of environmental concern in forming intentions for switching to electric scooters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 154(C), pages 129-144.
    9. Xu, X.M. & He, R., 2014. "Review on the heat dissipation performance of battery pack with different structures and operation conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 301-315.
    10. Babar, Abdul Haseeb Khan & Ali, Yousaf, 2021. "Enhancement of electric vehicles’ market competitiveness using fuzzy quality function deployment," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    11. Patyal, Vishal Singh & Kumar, Ravi & Kushwah, Shiksha, 2021. "Modeling barriers to the adoption of electric vehicles: An Indian perspective," Energy, Elsevier, vol. 237(C).
    12. Hsu, Yuan-Yong & Lu, Shao-Yuan, 2010. "Design and implementation of a hybrid electric motorcycle management system," Applied Energy, Elsevier, vol. 87(11), pages 3546-3551, November.
    13. Shen, Yu-Ta & Hwang, Yean-Ren, 2009. "Design and implementation of an air-powered motorcycles," Applied Energy, Elsevier, vol. 86(7-8), pages 1105-1110, July.
    14. Jun Li & Jiachao Shen & Bicen Jia, 2021. "Exploring Intention to Use Shared Electric Bicycles by the Extended Theory of Planned Behavior," Sustainability, MDPI, vol. 13(8), pages 1-13, April.
    15. Rao, Zhonghao & Wang, Shuangfeng, 2011. "A review of power battery thermal energy management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4554-4571.
    16. Xiaozhou Ye, 2022. "Bike-Sharing Adoption in Cross-National Contexts: An Empirical Research on the Factors Affecting Users’ Intentions," Sustainability, MDPI, vol. 14(6), pages 1-19, March.
    17. Li, Xintong & Han, Chunyang & Huang, Helai & Pervez, Amjad & Xu, Guangming & Hu, Cheng & Jiang, Qianshan & Wei, Yulu, 2023. "Pursuing higher acceptability and compliance for electric two-wheeler standardization policy in China: The importance of socio-demographic characteristics, psychological factors, and travel habits," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
    18. Chung, Cheng-Ta & Hung, Yi-Hsuan, 2015. "Performance and energy management of a novel full hybrid electric powertrain system," Energy, Elsevier, vol. 89(C), pages 626-636.
    19. John Humphrey & Ke Ding & Mai Fujita & Shiro Hioki & Koichiro Kimura, 2018. "Platforms, Innovation and Capability Development in the Chinese Domestic Market," The European Journal of Development Research, Palgrave Macmillan;European Association of Development Research and Training Institutes (EADI), vol. 30(3), pages 408-423, July.
    20. Siavash Khalili & Eetu Rantanen & Dmitrii Bogdanov & Christian Breyer, 2019. "Global Transportation Demand Development with Impacts on the Energy Demand and Greenhouse Gas Emissions in a Climate-Constrained World," Energies, MDPI, vol. 12(20), pages 1-54, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:146:y:2015:i:c:p:279-287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.