IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i7p2315-2323.html
   My bibliography  Save this article

Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions

Author

Listed:
  • Doucette, Reed T.
  • McCulloch, Malcolm D.

Abstract

This study models the CO2 emissions from electric (EV) and plug-in hybrid electric vehicles (PHEV), and compares the results to published values for the CO2 emissions from conventional vehicles based on internal combustion engines (ICE). PHEVs require fewer batteries than EVs which can make them lighter and more efficient than EVs. PHEVs can also operate their onboard ICEs more efficiently than can conventional vehicles. From this, it was theorized that PHEVs may be able to emit less CO2 than both conventional vehicles and EVs given certain power generation mixes of varying CO2 intensities. Amongst the results it was shown that with a highly CO2 intensive power generation mix, such as in China, PHEVs had the potential to be responsible for fewer tank to wheel CO2 emissions over their entire range than both a similar electric and conventional vehicle. The results also showed that unless highly CO2 intensive countries pursue a major decarbonization of their power generation, they will not be able to fully take advantage of the ability of EVs and PHEVs to reduce the CO2 emissions from automotive transport.

Suggested Citation

  • Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions," Applied Energy, Elsevier, vol. 88(7), pages 2315-2323, July.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:7:p:2315-2323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(11)00063-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the CO2 emissions from battery electric vehicles given the power generation mixes of different countries," Energy Policy, Elsevier, vol. 39(2), pages 803-811, February.
    2. Marcos Chamon & Paolo Mauro & Yohei Okawa, 2008. "Mass car ownership in the emerging market giants [‘Petroleum taxes’]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 23(54), pages 244-296.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Yang & Caixia Hao & Yina Chai, 2018. "Life Cycle Assessment of Commercial Delivery Trucks: Diesel, Plug-In Electric, and Battery-Swap Electric," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    2. S. R. Milyakin, 2023. "Motorization: History, Factors and Patterns," Studies on Russian Economic Development, Springer, vol. 34(2), pages 254-262, April.
    3. Varga, Bogdan Ovidiu, 2013. "Electric vehicles, primary energy sources and CO2 emissions: Romanian case study," Energy, Elsevier, vol. 49(C), pages 61-70.
    4. Wadud, Zia, 2020. "The effects of e-ridehailing on motorcycle ownership in an emerging-country megacity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 301-312.
    5. Tomas Hellebrandt & Paolo Mauro, 2015. "The Future of Worldwide Income Distribution," Working Paper Series WP15-7, Peterson Institute for International Economics.
    6. Duc Nguyen Huu & Van Nguyen Ngoc, 2021. "Analysis Study of Current Transportation Status in Vietnam’s Urban Traffic and the Transition to Electric Two-Wheelers Mobility," Sustainability, MDPI, vol. 13(10), pages 1-27, May.
    7. Ellen De Schepper & Steven Van Passel & Sebastien Lizin & Thomas Vincent & Benjamin Martin & Xavier Gandibleux, 2016. "Economic and environmental multi-objective optimisation to evaluate the impact of Belgian policy on solar power and electric vehicles," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 5(1), pages 1-27, March.
    8. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    9. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    10. M. Yu. Ksenofontov & S. R. Milyakin, 2020. "The Influence of the Spread of Automatic Control and Sharing Technologies on Motorization Processes: Concept, Calculation Scheme, Forecast," Studies on Russian Economic Development, Springer, vol. 31(3), pages 254-263, May.
    11. Abdul-Manan, Amir F.N., 2015. "Uncertainty and differences in GHG emissions between electric and conventional gasoline vehicles with implications for transport policy making," Energy Policy, Elsevier, vol. 87(C), pages 1-7.
    12. Wang, Yunshi & Teter, Jacob & Sperling, Daniel, 2011. "China's soaring vehicle population: Even greater than forecasted?," Energy Policy, Elsevier, vol. 39(6), pages 3296-3306, June.
    13. Zheng, Yanan & Ren, Dongming & Guo, Zheyu & Hu, Zhaoguang & Wen, Quan, 2019. "Research on integrated resource strategic planning based on complex uncertainty simulation with case study of China," Energy, Elsevier, vol. 180(C), pages 772-786.
    14. Manjunath, Archana & Gross, George, 2017. "Towards a meaningful metric for the quantification of GHG emissions of electric vehicles (EVs)," Energy Policy, Elsevier, vol. 102(C), pages 423-429.
    15. Zhu, Charles & Zhu, Yiliang & Lu, Rongzhu & He, Ren & Xia, Zhaolin, 2012. "Perceptions and aspirations for car ownership among Chinese students attending two universities in the Yangtze Delta, China," Journal of Transport Geography, Elsevier, vol. 24(C), pages 315-323.
    16. Requia, Weeberb J. & Adams, Matthew D. & Arain, Altaf & Koutrakis, Petros & Ferguson, Mark, 2017. "Carbon dioxide emissions of plug-in hybrid electric vehicles: A life-cycle analysis in eight Canadian cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1390-1396.
    17. Evangelinos, Christos & Tscharaktschiew, Stefan & Marcucci, Edoardo & Gatta, Valerio, 2018. "Pricing workplace parking via cash-out: Effects on modal choice and implications for transport policy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 369-380.
    18. Robin Smit & Daniel William Kennedy, 2022. "Greenhouse Gas Emissions Performance of Electric and Fossil-Fueled Passenger Vehicles with Uncertainty Estimates Using a Probabilistic Life-Cycle Assessment," Sustainability, MDPI, vol. 14(6), pages 1-29, March.
    19. Choi, Hyunhong & Shin, Jungwoo & Woo, JongRoul, 2018. "Effect of electricity generation mix on battery electric vehicle adoption and its environmental impact," Energy Policy, Elsevier, vol. 121(C), pages 13-24.
    20. Fleschutz, Markus & Bohlayer, Markus & Braun, Marco & Henze, Gregor & Murphy, Michael D., 2021. "The effect of price-based demand response on carbon emissions in European electricity markets: The importance of adequate carbon prices," Applied Energy, Elsevier, vol. 295(C).

    More about this item

    Keywords

    Electric Vehicle Hybrid Plug in CO2 Emission;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:7:p:2315-2323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.