IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v60y2016icp15-25.html
   My bibliography  Save this article

Dynamic performance assessment of bus transit with the multi-activity network structure

Author

Listed:
  • Yu, Ming-Miin
  • Chen, Li-Hsueh
  • Hsiao, Bo

Abstract

This paper proposes a multi-activity dynamic network data envelopment analysis model that combines the multi-activity, network and dynamic DEA models to assess the performance in terms of individual activities, individual processes, individual periods and overall operation. The main advantage of this model is that the linkages among activities and processes, the shared inputs among activities and processes, and the carry-over items among periods are included in a unified model. It can provide more appropriate performance measures. An empirical application of 20 bus transit firms in Taiwan for the period 2004–2012 is provided. Based on the operational characteristics of bus transit firms, both desirable and undesirable outputs are also incorporated into this model. The results show that none of the bus transit firms was effective in terms of the operational effectiveness, and the sources of operational ineffectiveness among bus transit firms were different. Over the period 2004–2012, the period-operational effectiveness scores maintained stable variance, the period efficiencies of highway and urban bus services appeared to have similar patterns, and transit bus firms performed well in the consumption process.

Suggested Citation

  • Yu, Ming-Miin & Chen, Li-Hsueh & Hsiao, Bo, 2016. "Dynamic performance assessment of bus transit with the multi-activity network structure," Omega, Elsevier, vol. 60(C), pages 15-25.
  • Handle: RePEc:eee:jomega:v:60:y:2016:i:c:p:15-25
    DOI: 10.1016/j.omega.2015.06.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305048315001292
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.omega.2015.06.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fare, Rolf & Grosskopf, Shawna, 1996. "Productivity and intermediate products: A frontier approach," Economics Letters, Elsevier, vol. 50(1), pages 65-70, January.
    2. Rolf Färe & Shawna Grosskopf & Gerald Whittaker, 2014. "Network DEA II," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 307-327, Springer.
    3. J. Cummins & Xiaoying Xie, 2013. "Efficiency, productivity, and scale economies in the U.S. property-liability insurance industry," Journal of Productivity Analysis, Springer, vol. 39(2), pages 141-164, April.
    4. Yu, Ming-Miin & Lin, Erwin T.J., 2008. "Efficiency and effectiveness in railway performance using a multi-activity network DEA model," Omega, Elsevier, vol. 36(6), pages 1005-1017, December.
    5. J. F. Nolan & P. C. Ritchie & J. R. Rowcroft, 2001. "Measuring efficiency in the public sector using nonparametric frontier estimators: a study of transit agencies in the USA," Applied Economics, Taylor & Francis Journals, vol. 33(7), pages 913-922.
    6. Po-Chi Chen, 2012. "Measurement of technical efficiency in farrow-to-finish swine production using multi-activity network data envelopment analysis: evidence from Taiwan," Journal of Productivity Analysis, Springer, vol. 38(3), pages 319-331, December.
    7. Wang, Chun-Hsien & Lu, Yung-Hsiang & Huang, Chin-Wei & Lee, Jun-Yen, 2013. "R&D, productivity, and market value: An empirical study from high-technology firms," Omega, Elsevier, vol. 41(1), pages 143-155.
    8. Kaoru Tone & Miki Tsutsui, 2014. "Slacks-Based Network DEA," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 231-259, Springer.
    9. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    10. Avkiran, Necmi Kemal, 2015. "An illustration of dynamic network DEA in commercial banking including robustness tests," Omega, Elsevier, vol. 55(C), pages 141-150.
    11. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    12. Jonathan Cowie & Darinka Asenova, 1999. "Organisation form, scale effects and efficiency in the British bus industry," Transportation, Springer, vol. 26(3), pages 231-248, August.
    13. Hiroyuki Kawaguchi & Kaoru Tone & Miki Tsutsui, 2014. "Estimation of the efficiency of Japanese hospitals using a dynamic and network data envelopment analysis model," Health Care Management Science, Springer, vol. 17(2), pages 101-112, June.
    14. Kao, Chiang & Liu, Shiang-Tai, 2014. "Multi-period efficiency measurement in data envelopment analysis: The case of Taiwanese commercial banks," Omega, Elsevier, vol. 47(C), pages 90-98.
    15. Yu, Ming-Miin & Fan, Chih-Ku, 2009. "Measuring the performance of multimode bus transit: A mixed structure network DEA model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(3), pages 501-515, May.
    16. Bruno De Borger & Kristiaan Kerstens & Álvaro Costa, 2002. "Public transit performance: What does one learn from frontier studies?," Transport Reviews, Taylor & Francis Journals, vol. 22(1), pages 1-38, January.
    17. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    18. Nemoto, Jiro & Goto, Mika, 1999. "Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies," Economics Letters, Elsevier, vol. 64(1), pages 51-56, July.
    19. Odeck, James, 2006. "Congestion, ownership, region of operation, and scale: Their impact on bus operator performance in Norway," Socio-Economic Planning Sciences, Elsevier, vol. 40(1), pages 52-69, March.
    20. B. de Borger & K. Kerstens, 2006. "The performance of bus-transit operators," Post-Print hal-00185456, HAL.
    21. Chu, Xuehao & Fielding, Gordon J. & Lamar, Bruce W., 1992. "Measuring transit performance using data envelopment analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 26(3), pages 223-230, May.
    22. Viton, Philip A., 1997. "Technical efficiency in multi-mode bus transit: A production frontier analysis," Transportation Research Part B: Methodological, Elsevier, vol. 31(1), pages 23-39, February.
    23. Fare, Rolf & Grosskopf, Shawna & Norris, Mary, 1997. "Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries: Reply," American Economic Review, American Economic Association, vol. 87(5), pages 1040-1043, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Bangjuan & Liu, Chengliang & Zhang, Hong, 2022. "Where are equity and service effectiveness? A tale from public transport in Shanghai," Journal of Transport Geography, Elsevier, vol. 98(C).
    2. Chao, Shih-Liang & Yu, Ming-Miin & Hsieh, Wei-Fan, 2018. "Evaluating the efficiency of major container shipping companies: A framework of dynamic network DEA with shared inputs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 44-57.
    3. Sheng-Hsiung Chiu & Tzu-Yu Lin & Wei-Ching Wang, 2024. "Investigating the spatial effect of operational performance in China’s regional tourism system," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    4. Bahram Fathi & Malihe Ashena & Majid Anisi, 2023. "Efficiency evaluation of sustainability indicators in a two-stage network structure: a Nash bargaining game approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(2), pages 1832-1851, February.
    5. Chen, Kaihua & Kou, Mingting & Fu, Xiaolan, 2018. "Evaluation of multi-period regional R&D efficiency: An application of dynamic DEA to China's regional R&D systems," Omega, Elsevier, vol. 74(C), pages 103-114.
    6. Mohammad Nourani & Wen‐Min Lu & Irene Wei Kiong Ting, 2020. "Vicarious warfare and dynamic efficiency of companies in the aerospace and defence industry," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(4), pages 641-650, June.
    7. Bo Hsiao & Li-Hsueh Chen, 2019. "Performance Evaluation for Taiwanese Hospitals by Multi-Activity Network Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1009-1043, May.
    8. Qingxian An & Fanyong Meng & Beibei Xiong & Zongrun Wang & Xiaohong Chen, 2020. "Assessing the relative efficiency of Chinese high-tech industries: a dynamic network data envelopment analysis approach," Annals of Operations Research, Springer, vol. 290(1), pages 707-729, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    2. Chao, Shih-Liang & Yu, Ming-Miin & Hsieh, Wei-Fan, 2018. "Evaluating the efficiency of major container shipping companies: A framework of dynamic network DEA with shared inputs," Transportation Research Part A: Policy and Practice, Elsevier, vol. 117(C), pages 44-57.
    3. Bo Hsiao & Li-Hsueh Chen, 2019. "Performance Evaluation for Taiwanese Hospitals by Multi-Activity Network Data Envelopment Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1009-1043, May.
    4. Omrani, Hashem & Soltanzadeh, Elham, 2016. "Dynamic DEA models with network structure: An application for Iranian airlines," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 52-61.
    5. Fukuyama, Hirofumi & Weber, William L., 2010. "A slacks-based inefficiency measure for a two-stage system with bad outputs," Omega, Elsevier, vol. 38(5), pages 398-409, October.
    6. Huang, Wencheng & Shuai, Bin & Sun, Yan & Wang, Yang & Antwi, Eric, 2018. "Using entropy-TOPSIS method to evaluate urban rail transit system operation performance: The China case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 292-303.
    7. Huang, Chin-wei & Ho, Foo Nin & Chiu, Yung-ho, 2014. "Measurement of tourist hotels׳ productive efficiency, occupancy, and catering service effectiveness using a modified two-stage DEA model in Taiwan," Omega, Elsevier, vol. 48(C), pages 49-59.
    8. Wanke, Peter & Tsionas, Mike G. & Chen, Zhongfei & Moreira Antunes, Jorge Junio, 2020. "Dynamic network DEA and SFA models for accounting and financial indicators with an analysis of super-efficiency in stochastic frontiers: An efficiency comparison in OECD banking," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 456-468.
    9. Yu, Ming-Miin, 2008. "Assessing the technical efficiency, service effectiveness, and technical effectiveness of the world's railways through NDEA analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(10), pages 1283-1294, December.
    10. Cinzia Daraio & Marco Diana & Flavia Di Costa & Claudio Leporelli & Giorgio Matteucci & Alberto Nastasi, 2014. "Efficiency and effectiveness in the urban public transport sector: a critical review with directions for future research," DIAG Technical Reports 2014-14, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    11. de Borger, Bruno & Kerstens, Kristiaan & Staat, Matthias, 2008. "Transit costs and cost efficiency: Bootstrapping non-parametric frontiers," Research in Transportation Economics, Elsevier, vol. 23(1), pages 53-64, January.
    12. Yu, Ming-Miin & Lin, Chung-I & Chen, Kuan-Chen & Chen, Li-Hsueh, 2021. "Measuring Taiwanese bank performance: A two-system dynamic network data envelopment analysis approach," Omega, Elsevier, vol. 98(C).
    13. Cavaignac, Laurent & Petiot, Romain, 2017. "A quarter century of Data Envelopment Analysis applied to the transport sector: A bibliometric analysis," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 84-96.
    14. Chang, Young-Tae & (Kevin) Park, Hyosoo & Zou, Bo & Kafle, Nabin, 2016. "Passenger facility charge vs. airport improvement program funds: A dynamic network DEA analysis for U.S. airport financing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 76-93.
    15. Chen, Yufeng & Ni, Liangfu & Liu, Kelong, 2021. "Does China's new energy vehicle industry innovate efficiently? A three-stage dynamic network slacks-based measure approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    16. Yongqi Feng & Haolin Zhang & Yung-ho Chiu & Tzu-Han Chang, 2021. "Innovation efficiency and the impact of the institutional quality: a cross-country analysis using the two-stage meta-frontier dynamic network DEA model," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 3091-3129, April.
    17. Karlaftis, Matthew G. & Tsamboulas, Dimitrios, 2012. "Efficiency measurement in public transport: Are findings specification sensitive?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 392-402.
    18. Khushalani, Jaya & Ozcan, Yasar A., 2017. "Are hospitals producing quality care efficiently? An analysis using Dynamic Network Data Envelopment Analysis (DEA)," Socio-Economic Planning Sciences, Elsevier, vol. 60(C), pages 15-23.
    19. Yu, Ming-Miin, 2010. "Assessment of airport performance using the SBM-NDEA model," Omega, Elsevier, vol. 38(6), pages 440-452, December.
    20. Zhang, Linyan & Chen, Kun, 2019. "Hierarchical network systems: An application to high-technology industry in China," Omega, Elsevier, vol. 82(C), pages 118-131.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:60:y:2016:i:c:p:15-25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.