IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v88y2016icp76-93.html
   My bibliography  Save this article

Passenger facility charge vs. airport improvement program funds: A dynamic network DEA analysis for U.S. airport financing

Author

Listed:
  • Chang, Young-Tae
  • (Kevin) Park, Hyosoo
  • Zou, Bo
  • Kafle, Nabin

Abstract

Passenger Facility Charge (PFC) and the Airport Improvement Program (AIP) are two major sources to finance U.S. airports. This paper develops a novel dynamic network DEA framework to investigate the substitutability between PFC and AIP funds. We find that the studied U.S. airports can substitute PFC for 8–35% of the current AIP funds and contribute significantly to the proposed plan of the US congress to cut AIP funding. In addition, the amount of PFC-for-AIP funds substitution negatively correlates with the productive efficiency of airports. The findings send an important message for future policy reforms on U.S. airport financing.

Suggested Citation

  • Chang, Young-Tae & (Kevin) Park, Hyosoo & Zou, Bo & Kafle, Nabin, 2016. "Passenger facility charge vs. airport improvement program funds: A dynamic network DEA analysis for U.S. airport financing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 88(C), pages 76-93.
  • Handle: RePEc:eee:transe:v:88:y:2016:i:c:p:76-93
    DOI: 10.1016/j.tre.2016.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554515301678
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2016.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rolf Färe & Shawna Grosskopf & Gerald Whittaker, 2014. "Network DEA II," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 307-327, Springer.
    2. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
    3. Gillen, David & Lall, Ashish, 1997. "Developing measures of airport productivity and performance: an application of data envelopment analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 33(4), pages 261-273, December.
    4. Tavassoli, Mohammad & Faramarzi, Gholam Reza & Farzipoor Saen, Reza, 2014. "Efficiency and effectiveness in airline performance using a SBM-NDEA model in the presence of shared input," Journal of Air Transport Management, Elsevier, vol. 34(C), pages 146-153.
    5. Wanke, Peter F., 2013. "Physical infrastructure and flight consolidation efficiency drivers in Brazilian airports: A two-stage network-DEA approach," Journal of Air Transport Management, Elsevier, vol. 31(C), pages 1-5.
    6. Yu, Ming-Miin & Lin, Erwin T.J., 2008. "Efficiency and effectiveness in railway performance using a multi-activity network DEA model," Omega, Elsevier, vol. 36(6), pages 1005-1017, December.
    7. Sarkis, Joseph & Talluri, Srinivas, 2004. "Performance based clustering for benchmarking of US airports," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(5), pages 329-346, June.
    8. Tone, Kaoru & Tsutsui, Miki, 2009. "Network DEA: A slacks-based measure approach," European Journal of Operational Research, Elsevier, vol. 197(1), pages 243-252, August.
    9. Jiro Nemoto & Mika Goto, 2003. "Measurement of Dynamic Efficiency in Production: An Application of Data Envelopment Analysis to Japanese Electric Utilities," Journal of Productivity Analysis, Springer, vol. 19(2), pages 191-210, April.
    10. Oum, Tae H. & Yan, Jia & Yu, Chunyan, 2008. "Ownership forms matter for airport efficiency: A stochastic frontier investigation of worldwide airports," Journal of Urban Economics, Elsevier, vol. 64(2), pages 422-435, September.
    11. Kaoru Tone & Miki Tsutsui, 2014. "Slacks-Based Network DEA," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 231-259, Springer.
    12. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    13. Nemoto, Jiro & Goto, Mika, 1999. "Dynamic data envelopment analysis: modeling intertemporal behavior of a firm in the presence of productive inefficiencies," Economics Letters, Elsevier, vol. 64(1), pages 51-56, July.
    14. Filadelfo Mateo & Tim Coelli & Chris O'Donnell, 2006. "Optimal Paths And Costs Of Adjustment In Dynamic DEA Models: With Application To Chilean Department Stores," Annals of Operations Research, Springer, vol. 145(1), pages 211-227, July.
    15. Adler, Nicole & Liebert, Vanessa, 2014. "Joint impact of competition, ownership form and economic regulation on airport performance and pricing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 92-109.
    16. Scotti, Davide & Malighetti, Paolo & Martini, Gianmaria & Volta, Nicola, 2012. "The impact of airport competition on technical efficiency: A stochastic frontier analysis applied to Italian airport," Journal of Air Transport Management, Elsevier, vol. 22(C), pages 9-15.
    17. Edward Jaenicke, 2000. "Testing for Intermediate Outputs in Dynamic DEA Models: Accounting for Soil Capital in Rotational Crop Production and Productivity Measures," Journal of Productivity Analysis, Springer, vol. 14(3), pages 247-266, November.
    18. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    19. Zou, Bo & Kafle, Nabin & Chang, Young-Tae & Park, Kevin, 2015. "US airport financial reform and its implications for airport efficiency: An exploratory investigation," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 66-78.
    20. Yu, Ming-Miin, 2010. "Assessment of airport performance using the SBM-NDEA model," Omega, Elsevier, vol. 38(6), pages 440-452, December.
    21. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    22. Liang Liang & Feng Yang & Wade Cook & Joe Zhu, 2006. "DEA models for supply chain efficiency evaluation," Annals of Operations Research, Springer, vol. 145(1), pages 35-49, July.
    23. Pels, Eric & Nijkamp, Peter & Rietveld, Piet, 2003. "Inefficiencies and scale economies of European airport operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 39(5), pages 341-361, September.
    24. Mallikarjun, Sreekanth, 2015. "Efficiency of US airlines: A strategic operating model," Journal of Air Transport Management, Elsevier, vol. 43(C), pages 46-56.
    25. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    26. Cook, Wade D. & Liang, Liang & Zhu, Joe, 2010. "Measuring performance of two-stage network structures by DEA: A review and future perspective," Omega, Elsevier, vol. 38(6), pages 423-430, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olfat, Laya & Amiri, Maghsoud & Bamdad Soufi, Jahanyar & Pishdar, Mahsa, 2016. "A dynamic network efficiency measurement of airports performance considering sustainable development concept: A fuzzy dynamic network-DEA approach," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 272-290.
    2. Milner, Mattie & Rice, Stephen & Rice, Connor, 2019. "Support for environmentally-friendly airports influenced by political affiliation and social identity," Technology in Society, Elsevier, vol. 59(C).
    3. Fragoudaki, Alexandra & Giokas, Dimitrios, 2020. "Airport efficiency in the dawn of privatization: The case of Greece," Journal of Air Transport Management, Elsevier, vol. 86(C).
    4. Chang, Young-Tae & Lee, Suhyung & Park, Hyosoo (Kevin), 2017. "Efficiency analysis of major cruise lines," Tourism Management, Elsevier, vol. 58(C), pages 78-88.
    5. Pooja Bansal & Aparna Mehra & Sunil Kumar, 2022. "Dynamic Metafrontier Malmquist–Luenberger Productivity Index in Network DEA: An Application to Banking Data," Computational Economics, Springer;Society for Computational Economics, vol. 59(1), pages 297-324, January.
    6. Christopher L. Atkinson, 2020. "The Federal Aviation Administration Airport Improvement Program: Who Benefits?," Public Organization Review, Springer, vol. 20(4), pages 789-805, December.
    7. Shi‐Xiao Wang & Wen‐Min Lu & Shiu‐Wan Hung, 2020. "Improving innovation efficiency of emerging economies: The role of manufacturing," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 41(4), pages 503-519, June.
    8. Li, Max Z. & Ryerson, Megan S., 2019. "Reviewing the DATAS of aviation research data: Diversity, availability, tractability, applicability, and sources," Journal of Air Transport Management, Elsevier, vol. 75(C), pages 111-130.
    9. Yu, Ming-Miin & Rakshit, Ipsita, 2023. "Assessing the dynamic efficiency and technology gap of airports under different ownerships: A union dynamic NDEA approach," Omega, Elsevier, vol. 119(C).
    10. Yu, Ming-Miin & Chen, Li-Hsueh & Chiang, Hui, 2017. "The effects of alliances and size on airlines’ dynamic operational performance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 197-214.
    11. Sergi, S. Bruno & D’Aleo, Vittorio & Arbolino, Roberta & Carlucci, Fabio & Barilla, David & Ioppolo, Giuseppe, 2020. "Evaluation of the Italian transport infrastructures: A technical and economic efficiency analysis," Land Use Policy, Elsevier, vol. 99(C).
    12. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    13. Aasheesh Dixit & Patanjal Kumar & Suresh Jakhar, 2021. "Airport-Airline Coordination with Economic, Environmental and Social Considerations," Papers 2110.11694, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kao, Chiang, 2014. "Network data envelopment analysis: A review," European Journal of Operational Research, Elsevier, vol. 239(1), pages 1-16.
    2. Tatiana Bencova & Andrea Bohacikova, 2022. "DEA in Performance Measurement of Two-Stage Processes: Comparative Overview of the Literature," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 5, pages 111-129.
    3. Joe Zhu, 2022. "DEA under big data: data enabled analytics and network data envelopment analysis," Annals of Operations Research, Springer, vol. 309(2), pages 761-783, February.
    4. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    5. Yu, Ming-Miin, 2010. "Assessment of airport performance using the SBM-NDEA model," Omega, Elsevier, vol. 38(6), pages 440-452, December.
    6. Aparicio, Juan & Kapelko, Magdalena, 2019. "Accounting for slacks to measure dynamic inefficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 463-471.
    7. Chang, Young-Tae & Lee, Suhyung & Park, Hyosoo (Kevin), 2017. "Efficiency analysis of major cruise lines," Tourism Management, Elsevier, vol. 58(C), pages 78-88.
    8. Chen, Kun & Zhu, Joe, 2020. "Additive slacks-based measure: Computational strategy and extension to network DEA," Omega, Elsevier, vol. 91(C).
    9. Omrani, Hashem & Soltanzadeh, Elham, 2016. "Dynamic DEA models with network structure: An application for Iranian airlines," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 52-61.
    10. lo Storto, Corrado, 2018. "The analysis of the cost-revenue production cycle efficiency of the Italian airports: A NSBM DEA approach," Journal of Air Transport Management, Elsevier, vol. 72(C), pages 77-85.
    11. Adler, Nicole & Liebert, Vanessa & Yazhemsky, Ekaterina, 2013. "Benchmarking airports from a managerial perspective," Omega, Elsevier, vol. 41(2), pages 442-458.
    12. Myung Je Lee & Changhee Kim, 2018. "A network DEA aeronautical and non-aeronautical production model: an application to South Korea airports," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 7(1), pages 1-12, December.
    13. Chen, Ya & Li, Yongjun & Liang, Liang & Salo, Ahti & Wu, Huaqing, 2016. "Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures," European Journal of Operational Research, Elsevier, vol. 250(2), pages 543-554.
    14. Yu, Ming-Miin & Rakshit, Ipsita, 2023. "Assessing the dynamic efficiency and technology gap of airports under different ownerships: A union dynamic NDEA approach," Omega, Elsevier, vol. 119(C).
    15. Liu, John S. & Lu, Louis Y.Y. & Lu, Wen-Min, 2016. "Research fronts in data envelopment analysis," Omega, Elsevier, vol. 58(C), pages 33-45.
    16. Akther, Syed & Fukuyama, Hirofumi & Weber, William L., 2013. "Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking," Omega, Elsevier, vol. 41(1), pages 88-96.
    17. Khezrimotlagh, Dariush & Kaffash, Sepideh & Zhu, Joe, 2022. "U.S. airline mergers’ performance and productivity change," Journal of Air Transport Management, Elsevier, vol. 102(C).
    18. Fukuyama, Hirofumi & Weber, William L., 2010. "A slacks-based inefficiency measure for a two-stage system with bad outputs," Omega, Elsevier, vol. 38(5), pages 398-409, October.
    19. Wang, Zhanwei & Song, Woon-Kyung, 2020. "Sustainable airport development with performance evaluation forecasts: A case study of 12 Asian airports," Journal of Air Transport Management, Elsevier, vol. 89(C).
    20. Zou, Bo & Kafle, Nabin & Chang, Young-Tae & Park, Kevin, 2015. "US airport financial reform and its implications for airport efficiency: An exploratory investigation," Journal of Air Transport Management, Elsevier, vol. 47(C), pages 66-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:88:y:2016:i:c:p:76-93. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.