IDEAS home Printed from https://ideas.repec.org/a/eee/jocoma/v9y2018icp1-20.html
   My bibliography  Save this article

Energy and agricultural commodities revealed through hedging characteristics: Evidence from developing and mature markets

Author

Listed:
  • Spencer, Simon
  • Bredin, Don
  • Conlon, Thomas

Abstract

What can we learn about a physical commodity by studying its hedging characteristics? We use a hedging study to shed light on important properties of ethanol (a developing market) and corn (a mature market). Our three primary contributions are empirical, with implications for all storable commodities. We identify important differences between regularly cited data sets for spot ethanol prices and clearly explain these differences in terms of the data collection methodology. The data selection implications for hedge effectiveness are found to be substantial. Having provided clarity on the data, we find consistent evidence to support the simple is better hypothesis in relation to futures hedging models. Finally we caution against complacency, as our methodology reveals how extreme events can lead to biases which reduce the hedge effectiveness at the very times when effective hedges are most needed.

Suggested Citation

  • Spencer, Simon & Bredin, Don & Conlon, Thomas, 2018. "Energy and agricultural commodities revealed through hedging characteristics: Evidence from developing and mature markets," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 1-20.
  • Handle: RePEc:eee:jocoma:v:9:y:2018:i:c:p:1-20
    DOI: 10.1016/j.jcomm.2017.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2405851317301083
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jcomm.2017.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dahlgran, Roger A., 2009. "Inventory and Transformation Hedging Effectiveness in Corn Crushing," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 34(1), pages 1-18, April.
    2. Teresa Serra, 2013. "Time-series econometric analyses of biofuel-related price volatility," Agricultural Economics, International Association of Agricultural Economists, vol. 44(s1), pages 53-62, November.
    3. A. G. Malliaris & Jorge Urrutia, 1991. "Tests of random walk of hedge ratios and measures of hedging effectiveness for stock indexes and foreign currencies," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(1), pages 55-68, February.
    4. Donald Lien & Yiu Kuen Tse, 1999. "Fractional cointegration and futures hedging," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 19(4), pages 457-474, June.
    5. Chang, Chia-Lin & Chen, Li-Hsueh & Hammoudeh, Shawkat & McAleer, Michael, 2012. "Asymmetric adjustments in the ethanol and grains markets," Energy Economics, Elsevier, vol. 34(6), pages 1990-2002.
    6. Franken, Jason R.V. & Parcell, Joseph L., 2003. "Cash Ethanol Cross-Hedging Opportunities," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 35(3), pages 1-8, December.
    7. Working, Holbrook, 1933. "Price Relations Between July And September Wheat Futures At Chicago Since 1885," Wheat Studies, Stanford University, Food Research Institute, vol. 9(06), March.
    8. Jean-Paul Chavas & David Hummels & Brian D. Wright, 2014. "The Economics of Food Price Volatility," NBER Books, National Bureau of Economic Research, Inc, number chav12-1, March.
    9. John Cotter & Jim Hanly, 2006. "Reevaluating hedging performance," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 26(7), pages 677-702, July.
    10. Philip Abbott, 2014. "Biofuels, Binding Constraints, and Agricultural Commodity Price Volatility," NBER Chapters, in: The Economics of Food Price Volatility, pages 91-131, National Bureau of Economic Research, Inc.
    11. Conlon, Thomas & Cotter, John, 2013. "Downside risk and the energy hedger's horizon," Energy Economics, Elsevier, vol. 36(C), pages 371-379.
    12. Cédric de Ville de Goyet & Geert Dhaene & Piet Sercu, 2008. "Testing the martingale hypothesis for futures prices: Implications for hedgers," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 28(11), pages 1040-1065, November.
    13. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    14. Ederington, Louis H, 1979. "The Hedging Performance of the New Futures Markets," Journal of Finance, American Finance Association, vol. 34(1), pages 157-170, March.
    15. Kristoufek, Ladislav & Janda, Karel & Zilberman, David, 2012. "Correlations between biofuels and related commodities before and during the food crisis: A taxonomy perspective," Energy Economics, Elsevier, vol. 34(5), pages 1380-1391.
    16. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    17. Vacha, Lukas & Janda, Karel & Kristoufek, Ladislav & Zilberman, David, 2013. "Time–frequency dynamics of biofuel–fuel–food system," Energy Economics, Elsevier, vol. 40(C), pages 233-241.
    18. Sung Yong Park & Sang Young Jei, 2010. "Estimation and hedging effectiveness of time‐varying hedge ratio: Flexible bivariate garch approaches," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(1), pages 71-99, January.
    19. Alexander, Carol & Prokopczuk, Marcel & Sumawong, Anannit, 2013. "The (de)merits of minimum-variance hedging: Application to the crack spread," Energy Economics, Elsevier, vol. 36(C), pages 698-707.
    20. James M. Griffin, 2013. "U.S. Ethanol Policy: Time to Reconsider?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    21. Emile J. Brinkmann & Ramon Rabinovitch, 1995. "Regional Limitations on the Hedging Effectiveness of Natural Gas Futures," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 113-124.
    22. Andrew W. Lo, A. Craig MacKinlay, 1988. "Stock Market Prices do not Follow Random Walks: Evidence from a Simple Specification Test," Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 41-66.
    23. Choudhry, Taufiq, 2009. "Short-run deviations and time-varying hedge ratios: Evidence from agricultural futures markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 58-65, March.
    24. Lo, Andrew W. & Craig MacKinlay, A., 1990. "An econometric analysis of nonsynchronous trading," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 181-211.
    25. Richard Duke & Daniel M. Kammen, 1999. "The Economics of Energy Market Transformation Programs," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 15-64.
    26. A. F. Herbst & D. D. Kare & S. C. Caples, 1989. "Hedging effectiveness and minimum risk hedge ratios in the presence of autocorrelation: Foreign currency futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 9(3), pages 185-197, June.
    27. Serra, Teresa & Zilberman, David, 2013. "Biofuel-related price transmission literature: A review," Energy Economics, Elsevier, vol. 37(C), pages 141-151.
    28. Sims, Christopher A, 1980. "Macroeconomics and Reality," Econometrica, Econometric Society, vol. 48(1), pages 1-48, January.
    29. Chavas, Jean-Paul & Hummels, David & Wright, Brian D. (ed.), 2014. "The Economics of Food Price Volatility," National Bureau of Economic Research Books, University of Chicago Press, number 9780226128924, December.
    30. Calvo, Ernesto, 2007. "The Responsive Legislature: Public Opinion and Law Making in a Highly Disciplined Legislature," British Journal of Political Science, Cambridge University Press, vol. 37(2), pages 263-280, April.
    31. Hansen, Bruce E., 1992. "Testing for parameter instability in linear models," Journal of Policy Modeling, Elsevier, vol. 14(4), pages 517-533, August.
    32. Jean-Paul Chavas & David Hummels & Brian D. Wright, 2014. "Introduction to "The Economics of Food Price Volatility"," NBER Chapters, in: The Economics of Food Price Volatility, pages 1-11, National Bureau of Economic Research, Inc.
    33. A. G. Malliaris & Jorge L. Urrutia, 1991. "The impact of the lengths of estimation periods and hedging horizons on the effectiveness of a Hedge: Evidence from foreign currency futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 11(3), pages 271-289, June.
    34. Carol Alexander & Andreza Barbosa, 2005. "The Spider in the Hedge," ICMA Centre Discussion Papers in Finance icma-dp2005-05, Henley Business School, University of Reading.
    35. Brennan, Donna & Williams, Jeffrey & Wright, Brian D, 1997. "Convenience Yield without the Convenience: A Spatial-Temporal Interpretation of Storage under Backwardation," Economic Journal, Royal Economic Society, vol. 107(443), pages 1009-1022, July.
    36. Katelijne A.E. Carbonez & Van Thi Tuong Nguyen & Piet Sercu, 2011. "Hedging with Two Futures Contracts: Simplicity Pays," European Financial Management, European Financial Management Association, vol. 17(5), pages 806-834, November.
    37. Brian D. Wright, 2011. "The Economics of Grain Price Volatility," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 33(1), pages 32-58.
    38. Asim Ghosh, 1993. "Hedging with stock index futures: Estimation and forecasting with error correction model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(7), pages 743-752, October.
    39. Donald Lien & Xiangdong Luo, 1993. "Estimating multiperiod hedge ratios in cointegrated markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 13(8), pages 909-920, December.
    40. Yudong Wang & Chongfeng Wu & Li Yang, 2015. "Hedging with Futures: Does Anything Beat the Naïve Hedging Strategy?," Management Science, INFORMS, vol. 61(12), pages 2870-2889, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rubbaniy, Ghulame & Khalid, Ali Awais & Syriopoulos, Konstantinos & Samitas, Aristeidis, 2022. "Safe-haven properties of soft commodities during times of Covid-19," Journal of Commodity Markets, Elsevier, vol. 27(C).
    2. Reboredo, Juan Carlos & Ugolini, Andrea & Hernandez, Jose Arreola, 2021. "Dynamic spillovers and network structure among commodity, currency, and stock markets," Resources Policy, Elsevier, vol. 74(C).
    3. Cao, Min & Conlon, Thomas, 2023. "Composite jet fuel cross-hedging," Journal of Commodity Markets, Elsevier, vol. 30(C).
    4. Chen, James Ming & Rehman, Mobeen Ur & Vo, Xuan Vinh, 2021. "Clustering commodity markets in space and time: Clarifying returns, volatility, and trading regimes through unsupervised machine learning," Resources Policy, Elsevier, vol. 73(C).
    5. Huifu Nong, 2024. "Connectedness and risk transmission of China’s stock and currency markets with global commodities," Economic Change and Restructuring, Springer, vol. 57(1), pages 1-24, February.
    6. Liya Hau & Huiming Zhu & Muhammad Shahbaz & Ke Huang, 2023. "Quantile Dependence between Crude Oil and China’s Biofuel Feedstock Commodity Market," Sustainability, MDPI, vol. 15(11), pages 1-17, June.
    7. Conlon, Thomas & McGee, Richard, 2020. "Safe haven or risky hazard? Bitcoin during the Covid-19 bear market," Finance Research Letters, Elsevier, vol. 35(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karel Janda & Ladislav Kristoufek, 2019. "The relationship between fuel and food prices: Methods, outcomes, and lessons for commodity price risk management," CAMA Working Papers 2019-20, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    2. Ghoddusi, Hamed & Emamzadehfard, Sahar, 2017. "Optimal hedging in the US natural gas market: The effect of maturity and cointegration," Energy Economics, Elsevier, vol. 63(C), pages 92-105.
    3. Qianjie Geng & Yudong Wang, 2021. "Futures Hedging in CSI 300 Markets: A Comparison Between Minimum-Variance and Maximum-Utility Frameworks," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 719-742, February.
    4. Cao, Min & Conlon, Thomas, 2023. "Composite jet fuel cross-hedging," Journal of Commodity Markets, Elsevier, vol. 30(C).
    5. Corbet, Shaen & Hou, Yang (Greg) & Hu, Yang & Oxley, Les, 2022. "The influence of the COVID-19 pandemic on the hedging functionality of Chinese financial markets," Research in International Business and Finance, Elsevier, vol. 59(C).
    6. Olson, Eric & Vivian, Andrew & Wohar, Mark E., 2019. "What is a better cross-hedge for energy: Equities or other commodities?," Global Finance Journal, Elsevier, vol. 42(C).
    7. Kunlapath Sukcharoen & Hankyeung Choi & David J. Leatham, 2015. "Optimal gasoline hedging strategies using futures contracts and exchange-traded funds," Applied Economics, Taylor & Francis Journals, vol. 47(32), pages 3482-3498, July.
    8. Donald Lien & Keshab Shrestha, 2005. "Estimating the optimal hedge ratio with focus information criterion," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 25(10), pages 1011-1024, October.
    9. Annastiina Silvennoinen & Susan Thorp, 2016. "Crude Oil and Agricultural Futures: An Analysis of Correlation Dynamics," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(6), pages 522-544, June.
    10. Olson, Eric & Vivian, Andrew & Wohar, Mark E., 2017. "Do commodities make effective hedges for equity investors?," Research in International Business and Finance, Elsevier, vol. 42(C), pages 1274-1288.
    11. Bastianin, Andrea & Galeotti, Marzio & Manera, Matteo, 2016. "Ethanol and field crops: Is there a price connection?," Food Policy, Elsevier, vol. 63(C), pages 53-61.
    12. An-Sing Chen & Yan-Zhen Liu, 2008. "Enhancing hedging performance with the spanning polynomial projection," Quantitative Finance, Taylor & Francis Journals, vol. 8(6), pages 605-617.
    13. Karel Janda & Ladislav Krištoufek, 2019. "The Relationship Between Fuel and Food Prices: Methods and Outcomes," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 195-216, October.
    14. Kotkatvuori-Örnberg, Juha, 2016. "Dynamic conditional copula correlation and optimal hedge ratios with currency futures," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 60-69.
    15. Franken, Jason R.V. & Irwin, Scott H. & Garcia, Philip, 2021. "Biodiesel hedging under binding renewable fuel standard mandates," Energy Economics, Elsevier, vol. 96(C).
    16. Hou, Yang & Li, Steven, 2013. "Hedging performance of Chinese stock index futures: An empirical analysis using wavelet analysis and flexible bivariate GARCH approaches," Pacific-Basin Finance Journal, Elsevier, vol. 24(C), pages 109-131.
    17. Bessler, Wolfgang & Wolff, Dominik, 2014. "Hedging European government bond portfolios during the recent sovereign debt crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 379-399.
    18. Wang, Yudong & Geng, Qianjie & Meng, Fanyi, 2019. "Futures hedging in crude oil markets: A comparison between minimum-variance and minimum-risk frameworks," Energy, Elsevier, vol. 181(C), pages 815-826.
    19. Jędrzej Białkowski & Martin T. Bohl & Devmali Perera, 2022. "Commodity Futures Hedge Ratios: A Meta-Analysis," Working Papers in Economics 22/12, University of Canterbury, Department of Economics and Finance.
    20. Białkowski, Jędrzej & Bohl, Martin T. & Perera, Devmali, 2023. "Commodity futures hedge ratios: A meta-analysis," Journal of Commodity Markets, Elsevier, vol. 30(C).

    More about this item

    Keywords

    Futures hedging; Corn; Ethanol; Renewable fuel standard; Data set choice; Model choice; 2013 Corn harvest;
    All these keywords.

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • Q02 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - General - - - Commodity Market
    • Q40 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - General
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jocoma:v:9:y:2018:i:c:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcomm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.