IDEAS home Printed from https://ideas.repec.org/a/eee/jfpoli/v112y2022ics0306919222001282.html
   My bibliography  Save this article

Extreme weather events cause significant crop yield losses at the farm level in German agriculture

Author

Listed:
  • Schmitt, Jonas
  • Offermann, Frank
  • Söder, Mareike
  • Frühauf, Cathleen
  • Finger, Robert

Abstract

Extreme weather events frequently cause severe crop yield losses, affecting food security and farmers’ incomes. In this paper, we aim to provide a holistic assessment of these impacts across various extreme weather events and multiple crops. More specifically, we estimate and compare the impact of frost, heat, drought and waterlogging on yields of winter wheat, winter barley, winter rapeseed and grain maize production in Germany. We analyse 423,815 farm-level yield observations between 1995 and 2019, and account for extreme weather conditions within critical phenological phases. Furthermore, we monetarize historical yield losses due to extreme weather events on a spatially disaggregated level. We find that drought is a main driver for farm-level grain yield and monetary losses in German agriculture. For instance, a single drought day can reduce winter wheat yields by up to 0.36%. It is estimated that during the period 1995–2019, summer drought led to yield losses in winter wheat, which, on average, caused annual revenues to sink by over 23 million Euro across Germany. We find that the impacts of extreme weather events vary considerably across space and time. For example, only the most important winter rapeseed production region in the North of Germany was prone to winter rapeseed yield losses due to heat during flowering. Moreover, waterlogging and frost are generally less relevant from an economic point of view, but can nevertheless cause crop- and regional-specific damage. Our analysis provides stakeholders with information for weather-related risk management and adaptation strategies.

Suggested Citation

  • Schmitt, Jonas & Offermann, Frank & Söder, Mareike & Frühauf, Cathleen & Finger, Robert, 2022. "Extreme weather events cause significant crop yield losses at the farm level in German agriculture," Food Policy, Elsevier, vol. 112(C).
  • Handle: RePEc:eee:jfpoli:v:112:y:2022:i:c:s0306919222001282
    DOI: 10.1016/j.foodpol.2022.102359
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306919222001282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.foodpol.2022.102359?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Willemijn Vroege & Janic Bucheli & Tobias Dalhaus & Martin Hirschi & Robert Finger, 2021. "Insuring crops from space: the potential of satellite-retrieved soil moisture to reduce farmers’ drought risk exposure," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(2), pages 266-314.
    2. Heidi Webber & Frank Ewert & Jørgen E. Olesen & Christoph Müller & Stefan Fronzek & Alex C. Ruane & Maryse Bourgault & Pierre Martre & Behnam Ababaei & Marco Bindi & Roberto Ferrise & Robert Finger & , 2018. "Diverging importance of drought stress for maize and winter wheat in Europe," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    3. Deepak K. Ray & Navin Ramankutty & Nathaniel D. Mueller & Paul C. West & Jonathan A. Foley, 2012. "Recent patterns of crop yield growth and stagnation," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    4. Corey Lesk & Pedram Rowhani & Navin Ramankutty, 2016. "Influence of extreme weather disasters on global crop production," Nature, Nature, vol. 529(7584), pages 84-87, January.
    5. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    6. Xiaomeng Cui, 2020. "Beyond Yield Response: Weather Shocks and Crop Abandonment," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 7(5), pages 901-932.
    7. Cameron, A. Colin & Gelbach, Jonah B. & Miller, Douglas L., 2011. "Robust Inference With Multiway Clustering," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 238-249.
    8. Willemijn Vroege & Robert Finger, 2020. "Insuring Weather Risks in European Agriculture," EuroChoices, The Agricultural Economics Society, vol. 19(2), pages 54-62, August.
    9. Anthony Louis D'Agostino & Wolfram Schlenker, 2016. "Recent weather fluctuations and agricultural yields: implications for climate change," Agricultural Economics, International Association of Agricultural Economists, vol. 47(S1), pages 159-171, November.
    10. Finger, Robert, 2012. "Biases in Farm-Level Yield Risk Analysis due to Data Aggregation," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(01), pages 1-14, February.
    11. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2012. "Temperature Shocks and Economic Growth: Evidence from the Last Half Century," American Economic Journal: Macroeconomics, American Economic Association, vol. 4(3), pages 66-95, July.
    12. Elodie Blanc & Wolfram Schlenker, 2017. "The Use of Panel Models in Assessments of Climate Impacts on Agriculture," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 11(2), pages 258-279.
    13. Julia Bailey-Serres & Jane E. Parker & Elizabeth A. Ainsworth & Giles E. D. Oldroyd & Julian I. Schroeder, 2019. "Genetic strategies for improving crop yields," Nature, Nature, vol. 575(7781), pages 109-118, November.
    14. Marra, Michele C. & Schurle, Bryan W., 1994. "Kansas Wheat Yield Risk Measures And Aggregation: A Meta- Analysis Approach," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 19(1), pages 1-9, July.
    15. Finger, Robert, 2012. "Biases in Farm-Level Yield Risk Analysis due to Data Aggregation," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 61(1).
    16. Xuebin Zhang & Lisa Alexander & Gabriele C. Hegerl & Philip Jones & Albert Klein Tank & Thomas C. Peterson & Blair Trewin & Francis W. Zwiers, 2011. "Indices for monitoring changes in extremes based on daily temperature and precipitation data," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 2(6), pages 851-870, November.
    17. Barry Smit & Mark Skinner, 2002. "Adaptation options in agriculture to climate change: a typology," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 7(1), pages 85-114, March.
    18. Miroslav Trnka & Reimund P. Rötter & Margarita Ruiz-Ramos & Kurt Christian Kersebaum & Jørgen E. Olesen & Zdeněk Žalud & Mikhail A. Semenov, 2014. "Adverse weather conditions for European wheat production will become more frequent with climate change," Nature Climate Change, Nature, vol. 4(7), pages 637-643, July.
    19. Janic Bucheli & Tobias Dalhaus & Robert Finger, 2021. "The optimal drought index for designing weather index insurance," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(3), pages 573-597.
    20. David B. Lobell & Graeme L. Hammer & Greg McLean & Carlos Messina & Michael J. Roberts & Wolfram Schlenker, 2013. "The critical role of extreme heat for maize production in the United States," Nature Climate Change, Nature, vol. 3(5), pages 497-501, May.
    21. Maximilian Auffhammer & Solomon M. Hsiang & Wolfram Schlenker & Adam Sobel, 2013. "Using Weather Data and Climate Model Output in Economic Analyses of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 7(2), pages 181-198, July.
    22. Gömann, Horst & Bender, Andrea & Bolte, Andreas & Dirksmeyer, Walter & Englert, Hermann & Feil, Jan-Henning & Frühauf, Cathleen & Hauschild, Marlen & Krengel, Sandra & Lilienthal, Holger & Löpmeier, F, 2015. "Agrarrelevante Extremwetterlagen und Möglichkeiten von Risikomanagementsystemen: Studie im Auftrag des Bundesministeriums für Ernährung und Landwirtschaft (BMEL)," Thünen Reports 30, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    23. Ariel Ortiz-Bobea & Toby R. Ault & Carlos M. Carrillo & Robert G. Chambers & David B. Lobell, 2021. "Anthropogenic climate change has slowed global agricultural productivity growth," Nature Climate Change, Nature, vol. 11(4), pages 306-312, April.
    24. Finger, Robert, 2010. "Evidence of slowing yield growth - The example of Swiss cereal yields," Food Policy, Elsevier, vol. 35(2), pages 175-182, April.
    25. Albers, Hakon & Gornott, Christoph & Hüttel, Silke, 2017. "How do inputs and weather drive wheat yield volatility? The example of Germany," Food Policy, Elsevier, vol. 70(C), pages 50-61.
    26. Noah Miller & Jesse Tack & Jason Bergtold, 2021. "The Impacts of Warming Temperatures on US Sorghum Yields and the Potential for Adaptation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(5), pages 1742-1758, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wencun Zhou & Zhengjia Liu & Sisi Wang, 2023. "Spatiotemporal Dynamics of the Cropland Area and Its Response to Increasing Regional Extreme Weather Events in the Farming-Pastoral Ecotone of Northern China during 1992–2020," Sustainability, MDPI, vol. 15(18), pages 1-28, September.
    2. Qiu, Lei & Wang, Xiaoyang & Wei, Jia, 2023. "Energy security and energy management: The role of extreme natural events," Innovation and Green Development, Elsevier, vol. 2(2).
    3. Nordmeyer, Eike Florenz & Danne, Michael & Musshoff, Oliver, 2023. "Can satellite-retrieved data increase farmers' willingness to insure against drought? – Insights from Germany," Agricultural Systems, Elsevier, vol. 211(C).
    4. Xingming Yuan & Bing Guo, 2022. "Dynamic Monitoring of the Ecological Vulnerability for Multi-Type Ecological Functional Areas during 2000–2018," Sustainability, MDPI, vol. 14(23), pages 1-24, November.
    5. Hongjun Lei & Jie Yu & Hongwei Pan & Jie Li & Shah Jahan Leghari & Chongju Shang & Zheyuan Xiao & Cuicui Jin & Lili Shi, 2023. "A New Agricultural Drought Disaster Risk Assessment Framework: Coupled a Copula Function to Select Return Periods and the Jensen Model to Calculate Yield Loss," Sustainability, MDPI, vol. 15(4), pages 1-16, February.
    6. Wittwer, Raphaël A. & Klaus, Valentin H. & Miranda Oliveira, Emily & Sun, Qing & Liu, Yujie & Gilgen, Anna K. & Buchmann, Nina & van der Heijden, Marcel G.A., 2023. "Limited capability of organic farming and conservation tillage to enhance agroecosystem resilience to severe drought," Agricultural Systems, Elsevier, vol. 211(C).
    7. Nordmeyer, Eike Florenz, 2023. "German farmers' perceived usefulness of satellite-based index insurance - Insights from a transtheoretical model," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334557, Agricultural Economics Society - AES.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bucheli, Janic & Dalhaus, Tobias & Finger, Robert, 2022. "Temperature effects on crop yields in heat index insurance," Food Policy, Elsevier, vol. 107(C).
    2. Ariel Ortiz-Bobea, 2021. "Climate, Agriculture and Food," Papers 2105.12044, arXiv.org.
    3. Luis Guillermo Becerra-Valbuena, 2021. "Droughts and Agricultural Adaptation to Climate Change," Working Papers halshs-03420657, HAL.
    4. Wang, Teng & Yi, Fujin & Liu, Huilin & Wu, Ximing & Zhong, Funing, 2021. "Can Agricultural Mechanization Have a Mitigation Effect on China's Yield Variability?," 2021 Conference, August 17-31, 2021, Virtual 315098, International Association of Agricultural Economists.
    5. Luis Guillermo Becerra-Valbuena, 2021. "Droughts and Agricultural Adaptation to Climate Change," PSE Working Papers halshs-03420657, HAL.
    6. Musa Hasen Ahmed & Wondimagegn Mesfin Tesfaye & Franziska Gassmann, 2023. "Early growing season weather variation, expectation formation and agricultural land allocation decisions in Ethiopia," Journal of Agricultural Economics, Wiley Blackwell, vol. 74(1), pages 255-272, February.
    7. Emediegwu, Lotanna E. & Ubabukoh, Chisom L., 2023. "Re-examining the impact of annual weather fluctuations on global livestock production," Ecological Economics, Elsevier, vol. 204(PA).
    8. Duden, C. & Offermann, F., 2019. "Farmers' risk exposition and its drivers," 171st Seminar, September 5-6, 2019, Zürich, Switzerland 333722, European Association of Agricultural Economists.
    9. Timothy Neal & Michael Keane, 2018. "The Impact of Climate Change on U.S. Agriculture: The Roles of Adaptation Techniques and Emissions Reductions," Discussion Papers 2018-08, School of Economics, The University of New South Wales.
    10. Emediegwu, Lotanna E. & Wossink, Ada & Hall, Alastair, 2022. "The impacts of climate change on agriculture in sub-Saharan Africa: A spatial panel data approach," World Development, Elsevier, vol. 158(C).
    11. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    12. Jimmy Karlsson, 2021. "Temperature and Exports: Evidence from the United States," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 80(2), pages 311-337, October.
    13. Tappi, Marco & Nardone, Gianluca & Santeramo, Fabio Gaetano, 2022. "On the relationships among durum wheat yields and weather conditions: evidence from Apulia region, Southern Italy," Bio-based and Applied Economics Journal, Italian Association of Agricultural and Applied Economics (AIEAA), vol. 11(2), July.
    14. Xiaomeng Cui & Wei Xie, 2022. "Adapting Agriculture to Climate Change through Growing Season Adjustments: Evidence from Corn in China," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 249-272, January.
    15. Yabin Da & Yangyang Xu & Bruce McCarl, 2022. "Effects of Surface Ozone and Climate on Historical (1980–2015) Crop Yields in the United States: Implication for Mid-21st Century Projection," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 81(2), pages 355-378, February.
    16. Michael Keane & Timothy Neal, 2020. "Climate change and U.S. agriculture: Accounting for multidimensional slope heterogeneity in panel data," Quantitative Economics, Econometric Society, vol. 11(4), pages 1391-1429, November.
    17. Tappi, Marco & Carucci, Federica & Gatta, Giuseppe & Giuliani, Marcella Michela & Lamonaca, Emilia & Santeramo, Fabio Gaetano, 2023. "Temporal and design approaches and yield-weather relationships," MPRA Paper 117488, University Library of Munich, Germany.
    18. Schmidt, Lorenz & Odening, Martin & Schlanstein, Johann & Ritter, Matthias, 2022. "Exploring the weather-yield nexus with artificial neural networks," Agricultural Systems, Elsevier, vol. 196(C).
    19. Taraz, Vis, 2018. "Can farmers adapt to higher temperatures? Evidence from India," World Development, Elsevier, vol. 112(C), pages 205-219.
    20. Bucheli, Janic & Visse, Margot & Herrera, Juan & Häner, Lilia Levy & Tack, Jesse & Finger, Robert, 2022. "Precipitation causes quality losses of economic relevance in wheat production," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321208, Agricultural Economics Society - AES.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfpoli:v:112:y:2022:i:c:s0306919222001282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/foodpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.