IDEAS home Printed from https://ideas.repec.org/a/eee/jfpoli/v102y2021ics0306919221000701.html
   My bibliography  Save this article

Controlling for the effects of climate on total factor productivity: A case study of Australian farms

Author

Listed:
  • Chancellor, Will
  • Hughes, Neal
  • Zhao, Shiji
  • Soh, Wei Ying
  • Valle, Haydn
  • Boult, Christopher

Abstract

Estimates of agricultural Total Factor Productivity (TFP) can be highly sensitive to both short-run climate variability and long-term climate change. This is particularly true in Australia where drought impacts are responsible for most of the annual volatility in official farm TFP statistics. While climate variability can obscure short-term productivity trends, researchers have typically assumed that long run TFP trends are largely unaffected. However, in the presence of global climate change this assumption becomes problematic. For example, in Australia, shifts to higher temperatures and lower winter season rainfall over the last 20–30 years have had a significant negative impact on agricultural productivity. This study presents a framework to account for the effects of climate variability on TFP estimates. In contrast with previous work, this approach applies a reduced form machine learning based model of farm production to generate synthetic (climate-adjusted) farm-level input and output data sets. It therefore has advantages in terms of flexibility—since the synthetic datasets can be combined with any existing TFP estimation framework. In this study, the approach is applied to estimate climate-adjusted TFP indices (TFP under an assumption of constant long-run average climate conditions) for a range of Australian agricultural sectors.

Suggested Citation

  • Chancellor, Will & Hughes, Neal & Zhao, Shiji & Soh, Wei Ying & Valle, Haydn & Boult, Christopher, 2021. "Controlling for the effects of climate on total factor productivity: A case study of Australian farms," Food Policy, Elsevier, vol. 102(C).
  • Handle: RePEc:eee:jfpoli:v:102:y:2021:i:c:s0306919221000701
    DOI: 10.1016/j.foodpol.2021.102091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306919221000701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.foodpol.2021.102091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sheng, Yu & Chancellor, Will, 2019. "Exploring the relationship between farm size and productivity: Evidence from the Australian grains industry," Food Policy, Elsevier, vol. 84(C), pages 196-204.
    2. Deborah Gordon & Eugene Perk Han Tan & Jeffrey Feldman, 2016. "Changing Oils, Changing Management," Journal of Industrial Ecology, Yale University, vol. 20(4), pages 673-675, August.
    3. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    4. Martina Bozzola & Emanuele Massetti & Robert Mendelsohn & Fabian Capitanio, 2018. "A Ricardian analysis of the impact of climate change on Italian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 57-79.
    5. ., 2016. "Public research enterprises: The changing landscape," Chapters, in: Structuring Public–Private Research Partnerships for Success, chapter 1, pages 1-16, Edward Elgar Publishing.
    6. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    7. Andrew L. Fletcher & Chao Chen & Noboru Ota & Roger A. Lawes & Yvette M. Oliver, 2020. "Has historic climate change affected the spatial distribution of water-limited wheat yield across Western Australia?," Climatic Change, Springer, vol. 159(3), pages 347-364, April.
    8. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    9. Senay Acikgoz & Merter Mert, 2014. "Sources of Growth Revisited: The Importance of the Nature of Technological Progress," Journal of Applied Economics, Taylor & Francis Journals, vol. 17(1), pages 31-62, May.
    10. Wallace E. Huffman & Yu Jin & Zheng Xu, 2018. "The economic impacts of technology and climate change: New evidence from U.S. corn yields," Agricultural Economics, International Association of Agricultural Economists, vol. 49(4), pages 463-479, July.
    11. George F. N. Shoukry, 2016. "Criminals' Response To Changing Crime Lucre," Economic Inquiry, Western Economic Association International, vol. 54(3), pages 1464-1483, July.
    12. Smith, Mark Stafford & Foran, Barney, 1992. "An approach to assessing the economic risk of different drought management tactics on a South Australian pastoral sheep station," Agricultural Systems, Elsevier, vol. 39(1), pages 83-105.
    13. Eric Njuki & Boris E Bravo-Ureta & Víctor E Cabrera, 2020. "Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1276-1301.
    14. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    15. Robert G. Chambers & Simone Pieralli, 2020. "The Sources of Measured US Agricultural Productivity Growth: Weather, Technological Change, and Adaptation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1198-1226, August.
    16. Cindy Li, 2016. "The Changing Face of Shadow Banking in China," Asia Focus, Federal Reserve Bank of San Francisco, issue December.
    17. Cordero, José Manuel & Santín, Daniel & Sicilia, Gabriela, 2013. "Dealing with the Endogeneity Problem in Data Envelopment Analysis," MPRA Paper 47475, University Library of Munich, Germany.
    18. Shuaizhang Feng & Michael Oppenheimer & Wolfram Schlenker, 2012. "Climate Change, Crop Yields, and Internal Migration in the United States," NBER Working Papers 17734, National Bureau of Economic Research, Inc.
    19. Hughes, Neal & Lawson, Kenton & Davidson, Alistair & Jackson, Tom & Sheng, Yu, 2011. "Productivity pathways: climate-adjusted production frontiers for the Australian broadacre cropping industry," 2011 Conference (55th), February 8-11, 2011, Melbourne, Australia 100563, Australian Agricultural and Resource Economics Society.
    20. Nazrul Islam & Vilaphonh Xayavong & Ross Kingwell, 2014. "Broadacre farm productivity and profitability in south-western Australia," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 58(2), pages 147-170, April.
    21. Frank M. Gollop & Gregory P. Swinand, 1998. "From Total Factor to Total Resource Productivity: An Application to Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(3), pages 577-583.
    22. J. R. Hicks, 1963. "The Theory of Wages," Palgrave Macmillan Books, Palgrave Macmillan, number 978-1-349-00189-7.
    23. Farid Khan & Ruhul Salim & Harry Bloch, 2015. "Nonparametric estimates of productivity and efficiency change in Australian Broadacre Agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 59(3), pages 393-411, July.
    24. Sheng, Yu & Gray, Emily M. & Mullen, John D., 2011. "Public investment in R&D and extension and productivity in Australian broadacre agriculture," 2011 Conference (55th), February 8-11, 2011, Melbourne, Australia 100712, Australian Agricultural and Resource Economics Society.
    25. Robert G. Chambers & Simone Pieralli & Yu Sheng, 2020. "The Millennium Droughts and Australian Agricultural Productivity Performance: A Nonparametric Analysis," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1383-1403, October.
    26. Diewert, W. E., 1976. "Exact and superlative index numbers," Journal of Econometrics, Elsevier, vol. 4(2), pages 115-145, May.
    27. Ryan Mutter & William Greene & William Spector & Michael Rosko & Dana Mukamel, 2013. "Investigating the impact of endogeneity on inefficiency estimates in the application of stochastic frontier analysis to nursing homes," Journal of Productivity Analysis, Springer, vol. 39(2), pages 101-110, April.
    28. Eric Njuki & Boris E Bravo-Ureta & Víctor E Cabrera, 2020. "Corrigendum: Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(2), pages 848-848.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neal Hughes & Michael Lu & Wei Ying Soh & Kenton Lawson, 2022. "Modelling the effects of climate change on the profitability of Australian farms," Climatic Change, Springer, vol. 172(1), pages 1-22, May.
    2. Lindikaya W. Myeki & Yonas T. Bahta & Nicolette Matthews, 2022. "Exploring the Growth of Agricultural Productivity in AFRICA: A Färe-Primont Index Approach," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    3. Amanda R. Bourne & John Bruce & Meredith M. Guthrie & Li-Ann Koh & Kaylene Parker & Stanley Mastrantonis & Igor Veljanoski, 2023. "Identifying areas of high drought risk in southwest Western Australia," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(2), pages 1361-1385, September.
    4. Hughes, Neal & Soh, Wei Ying & Lawson, Kenton & Lu, Michael, 2022. "Improving the performance of micro-simulation models with machine learning: The case of Australian farms," Economic Modelling, Elsevier, vol. 115(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Njuki & Boris E Bravo-Ureta & Víctor E Cabrera, 2020. "Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1276-1301.
    2. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    3. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    4. Haseeb Ahmed & Lena-Mari Tamminen & Ulf Emanuelson, 2022. "Temperature, productivity, and heat tolerance: Evidence from Swedish dairy production," Climatic Change, Springer, vol. 175(1), pages 1-18, November.
    5. Sabrina Auci & Nicolò Barbieri & Manuela Coromaldi & Donatella Vignani, 2021. "Innovation for climate change adaptation and technical efficiency: an empirical analysis in the European agricultural sector," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(2), pages 597-623, July.
    6. Sam Fankhauser, 2016. "Adaptation to climate change," GRI Working Papers 255, Grantham Research Institute on Climate Change and the Environment.
    7. Sheng, Yu & Zhao, Shiji & Yang, Sansi, 2021. "Weather shocks, adaptation and agricultural TFP: A cross-region comparison of Australian Broadacre farms," Energy Economics, Elsevier, vol. 101(C).
    8. Eric Njuki & Boris E. Bravo-Ureta & Christopher J. O’Donnell, 2019. "Decomposing agricultural productivity growth using a random-parameters stochastic production frontier," Empirical Economics, Springer, vol. 57(3), pages 839-860, September.
    9. Tao Xiang & Tariq H. Malik & Jack W. Hou & Jiliang Ma, 2022. "The Impact of Climate Change on Agricultural Total Factor Productivity: A Cross-Country Panel Data Analysis, 1961–2013," Agriculture, MDPI, vol. 12(12), pages 1-20, December.
    10. Sun, Yunpeng & Razzaq, Asif & Kizys, Renatas & Bao, Qun, 2022. "High-speed rail and urban green productivity: The mediating role of climatic conditions in China," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    11. S. C. West & A. W. Mugera & R. S. Kingwell, 2022. "The choice of efficiency benchmarking metric in evaluating firm productivity and viability," Journal of Productivity Analysis, Springer, vol. 57(2), pages 193-211, April.
    12. Surender Kumar & Madhu Khanna, 2023. "Distributional heterogeneity in climate change impacts and adaptation: Evidence from Indian agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 54(2), pages 147-160, March.
    13. Fernando M. Aragón & Francisco Oteiza & Juan Pablo Rud, 2018. "Climate change and agriculture: farmer adaptation to extreme heat," IFS Working Papers W18/06, Institute for Fiscal Studies.
    14. Sedova, Barbora & Kalkuhl, Matthias, 2020. "Who are the climate migrants and where do they go? Evidence from rural India," World Development, Elsevier, vol. 129(C).
    15. Severen, Christopher & Costello, Christopher & Deschênes, Olivier, 2018. "A Forward-Looking Ricardian Approach: Do land markets capitalize climate change forecasts?," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 235-254.
    16. C. J. O’Donnell, 2021. "Estimating the Effects of Weather and Climate Change on Agricultural Productivity," CEPA Working Papers Series WP032021, School of Economics, University of Queensland, Australia.
    17. Seungki Lee & Yongjie Ji & GianCarlo Moschini, 2021. "Agricultural Innovation and Adaptation to Climate Change: Insights from Genetically Engineered Maize," Center for Agricultural and Rural Development (CARD) Publications 21-wp616, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    18. Robert G. Chambers & Simone Pieralli, 2020. "The Sources of Measured US Agricultural Productivity Growth: Weather, Technological Change, and Adaptation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1198-1226, August.
    19. Rodrigo Garcia‐Verdu & Alexis Meyer‐Cirkel & Akira Sasahara & Hans Weisfeld, 2022. "Importing inputs for climate change mitigation: The case of agricultural productivity," Review of International Economics, Wiley Blackwell, vol. 30(1), pages 34-56, February.
    20. Pierre Mérel & Matthew Gammans, 2021. "Climate Econometrics: Can the Panel Approach Account for Long‐Run Adaptation?," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(4), pages 1207-1238, August.

    More about this item

    Keywords

    Total factor productivity; Machine learning; Climate variability; Climate change; Australian farms;
    All these keywords.

    JEL classification:

    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • Q10 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - General
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jfpoli:v:102:y:2021:i:c:s0306919221000701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/foodpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.