IDEAS home Printed from https://ideas.repec.org/a/wly/ajagec/v102y2020i4p1198-1226.html
   My bibliography  Save this article

The Sources of Measured US Agricultural Productivity Growth: Weather, Technological Change, and Adaptation

Author

Listed:
  • Robert G. Chambers
  • Simone Pieralli

Abstract

The interaction between US state‐level TFP growth and weather is investigated using growth‐accounting techniques. The focus is on examining how that interaction changed between the 1960s and the end of the twentieth century. An empirical approximation to the production frontier constructed using state‐level data and mathematical programming techniques is used to decompose observed state‐level agricultural TFP growth into four components: technical change, weather‐related shifts in the frontier, input/scale effects, and adaptation to the frontier. Technical change and adaptation to the frontier play a significant role in determining average state total factor productivity. Weather‐related effects differ across Climate‐Hub Regions but are of particular importance in the Midwest.

Suggested Citation

  • Robert G. Chambers & Simone Pieralli, 2020. "The Sources of Measured US Agricultural Productivity Growth: Weather, Technological Change, and Adaptation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1198-1226, August.
  • Handle: RePEc:wly:ajagec:v:102:y:2020:i:4:p:1198-1226
    DOI: 10.1002/ajae.12090
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ajae.12090
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ajae.12090?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Darlington Sabasi & C. Richard Shumway, 2018. "Climate change, health care access and regional influence on components of U.S. agricultural productivity," Applied Economics, Taylor & Francis Journals, vol. 50(57), pages 6149-6164, December.
    2. D. W. Jorgenson & Z. Griliches, 1967. "The Explanation of Productivity Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 34(3), pages 249-283.
    3. Anthony C. Fisher & W. Michael Hanemann & Michael J. Roberts & Wolfram Schlenker, 2012. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather: Comment," American Economic Review, American Economic Association, vol. 102(7), pages 3749-3760, December.
    4. Wang, Sun Ling & Heisey, Paul & Schimmelpfennig, David & Ball, Eldon, 2015. "Agricultural Productivity Growth in the United States: Measurement, Trends, and Drivers," Economic Research Report 207954, United States Department of Agriculture, Economic Research Service.
    5. Afriat, Sidney N, 1972. "Efficiency Estimation of Production Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(3), pages 568-598, October.
    6. Zvi Griliches, 1960. "Measuring Inputs in Agriculture: A Critical Survey," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 42(5), pages 1411-1427.
    7. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    8. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    9. Wang, Sun Ling & McPhail, Lihong, 2014. "Impacts of energy shocks on US agricultural productivity growth and commodity prices—A structural VAR analysis," Energy Economics, Elsevier, vol. 46(C), pages 435-444.
    10. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    11. Theodore W. Schultz, 1956. "Reflections on Agricultural Production, Output and Supply," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 38(3), pages 748-762.
    12. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    13. Kneip, Alois & Simar, Léopold & Wilson, Paul W., 2015. "When Bias Kills The Variance: Central Limit Theorems For Dea And Fdh Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 31(2), pages 394-422, April.
    14. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    15. Wolfram Schlenker & Michael J. Roberts, 2008. "Estimating the Impact of Climate Change on Crop Yields: The Importance of Nonlinear Temperature Effects," NBER Working Papers 13799, National Bureau of Economic Research, Inc.
    16. Dale W. Jorgenson, 2011. "Innovation and Productivity Growth," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(2), pages 276-296.
    17. Patricia Byrnes & Rolf Färe & Shawna Grosskopf & C. A. Knox Lovell, 1988. "The Effect of Unions on Productivity: U.S. Surface Mining of Coal," Management Science, INFORMS, vol. 34(9), pages 1037-1053, September.
    18. Richard M. Adams, 1989. "Global Climate Change and Agriculture: An Economic Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(5), pages 1272-1279.
    19. Sansi Yang & C. Richard Shumway, 2016. "Dynamic Adjustment in US Agriculture under Climate Change," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 98(3), pages 910-924.
    20. Caves, Douglas W & Christensen, Laurits R & Diewert, W Erwin, 1982. "The Economic Theory of Index Numbers and the Measurement of Input, Output, and Productivity," Econometrica, Econometric Society, vol. 50(6), pages 1393-1414, November.
    21. Olmstead, Alan L. & Rhode, Paul W., 2008. "Biological Innovation and Productivity Growth in the Antebellum Cotton Economy," The Journal of Economic History, Cambridge University Press, vol. 68(4), pages 1123-1171, December.
    22. Subodh Kumar & R. Robert Russell, 2002. "Technological Change, Technological Catch-up, and Capital Deepening: Relative Contributions to Growth and Convergence," American Economic Review, American Economic Association, vol. 92(3), pages 527-548, June.
    23. Robert G Chambers & Teresa Serra, 2019. "Estimating Ex Ante Cost Functions for Stochastic Technologies," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(3), pages 807-824.
    24. V. Eldon Ball & Charles Hallahan & Richard Nehring, 2004. "Convergence of Productivity: An Analysis of the Catch-up Hypothesis within a Panel of States," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(5), pages 1315-1321.
    25. Daniel J. Henderson & R. Robert Russell, 2005. "Human Capital And Convergence: A Production-Frontier Approach ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1167-1205, November.
    26. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    27. Li, Qi & Maasoumi, Esfandiar & Racine, Jeffrey S., 2009. "A nonparametric test for equality of distributions with mixed categorical and continuous data," Journal of Econometrics, Elsevier, vol. 148(2), pages 186-200, February.
    28. Zvi Griliches, 1963. "The Sources of Measured Productivity Growth: United States Agriculture, 1940-60," Journal of Political Economy, University of Chicago Press, vol. 71, pages 331-331.
    29. Robert Chambers, 2008. "Stochastic productivity measurement," Journal of Productivity Analysis, Springer, vol. 30(2), pages 107-120, October.
    30. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    31. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    32. Dale W. Jorgenson & Mun S. Ho & Kevin J. Stiroh, 2005. "Productivity, Volume 3: Information Technology and the American Growth Resurgence," MIT Press Books, The MIT Press, edition 1, volume 3, number 0262101114, December.
    33. Diewert, W E, 1980. "Capital and the Theory of Productivity Measurement," American Economic Review, American Economic Association, vol. 70(2), pages 260-267, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michée A. Lachaud & Boris E. Bravo‐Ureta, 2021. "Agricultural productivity growth in Latin America and the Caribbean: an analysis of climatic effects, catch‐up and convergence," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 65(1), pages 143-170, January.
    2. Oranuch Wongpiyabovorn & Alejandro Plastina & John M. Crespi, 2021. "US Agriculture as a Carbon Sink: From International Agreements to Farm Incentives," Center for Agricultural and Rural Development (CARD) Publications 21-wp627, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    3. Alejandro Plastina & Sergio H. Lence & Ariel Ortiz‐Bobea, 2021. "How weather affects the decomposition of total factor productivity in U.S. agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 52(2), pages 215-234, March.
    4. Chancellor, Will & Hughes, Neal & Zhao, Shiji & Soh, Wei Ying & Valle, Haydn & Boult, Christopher, 2021. "Controlling for the effects of climate on total factor productivity: A case study of Australian farms," Food Policy, Elsevier, vol. 102(C).
    5. S. C. West & A. W. Mugera & R. S. Kingwell, 2022. "The choice of efficiency benchmarking metric in evaluating firm productivity and viability," Journal of Productivity Analysis, Springer, vol. 57(2), pages 193-211, April.
    6. Katherine Lacy & Peter F. Orazem & Skyler Schneekloth, 2023. "Measuring the American farm size distribution," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(1), pages 219-242, January.
    7. Zhihao Zheng & Shen Cheng & Shida R. Henneberry, 2023. "Total factor productivity change in China's grain production sector: 1980–2018," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 67(1), pages 38-55, January.
    8. Tao Xiang & Tariq H. Malik & Jack W. Hou & Jiliang Ma, 2022. "The Impact of Climate Change on Agricultural Total Factor Productivity: A Cross-Country Panel Data Analysis, 1961–2013," Agriculture, MDPI, vol. 12(12), pages 1-20, December.
    9. Wang, Sun Ling & Olver, Ryan & Bonin, Daniel & Dodson, Laura L. & Williams, Ryan C., 2022. "Climate change, technology adoption, and field crop farm productivity in the United States: Short-term vs. long-term," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322595, Agricultural and Applied Economics Association.
    10. Sheng, Yu & Zhao, Shiji & Yang, Sansi, 2021. "Weather shocks, adaptation and agricultural TFP: A cross-region comparison of Australian Broadacre farms," Energy Economics, Elsevier, vol. 101(C).
    11. Yang Shen & Xiaoyang Guo & Xiuwu Zhang, 2023. "Digital Financial Inclusion, Land Transfer, and Agricultural Green Total Factor Productivity," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    12. Uehleke, Reinhard & Petrick, Martin & Hüttel, Silke, 2022. "Evaluations of agri-environmental schemes based on observational farm data: The importance of covariate selection," Land Use Policy, Elsevier, vol. 114(C).
    13. Rodrigo Garcia‐Verdu & Alexis Meyer‐Cirkel & Akira Sasahara & Hans Weisfeld, 2022. "Importing inputs for climate change mitigation: The case of agricultural productivity," Review of International Economics, Wiley Blackwell, vol. 30(1), pages 34-56, February.
    14. Stetter, Christian & Sauer, Johannes, 2022. "Agroforestry Adoption in the Face of Regional Weather Extremes," 96th Annual Conference, April 4-6, 2022, K U Leuven, Belgium 321173, Agricultural Economics Society - AES.
    15. Michée A. Lachaud & Boris E. Bravo‐Ureta & Carlos E. Ludena, 2022. "Economic effects of climate change on agricultural production and productivity in Latin America and the Caribbean (LAC)," Agricultural Economics, International Association of Agricultural Economists, vol. 53(2), pages 321-332, March.
    16. Hertel, Thomas W. & de Lima, Cicero Z., 2020. "Viewpoint: Climate impacts on agriculture: Searching for keys under the streetlight," Food Policy, Elsevier, vol. 95(C).
    17. Sun, Yunpeng & Razzaq, Asif & Kizys, Renatas & Bao, Qun, 2022. "High-speed rail and urban green productivity: The mediating role of climatic conditions in China," Technological Forecasting and Social Change, Elsevier, vol. 185(C).
    18. Robert G. Chambers & Simone Pieralli & Yu Sheng, 2020. "The Millennium Droughts and Australian Agricultural Productivity Performance: A Nonparametric Analysis," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1383-1403, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Robert G. Chambers & Simone Pieralli & Yu Sheng, 2020. "The Millennium Droughts and Australian Agricultural Productivity Performance: A Nonparametric Analysis," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(5), pages 1383-1403, October.
    2. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    3. Eric Njuki & Boris E. Bravo-Ureta & Christopher J. O’Donnell, 2019. "Decomposing agricultural productivity growth using a random-parameters stochastic production frontier," Empirical Economics, Springer, vol. 57(3), pages 839-860, September.
    4. Valentin Zelenyuk, 2023. "Productivity analysis: roots, foundations, trends and perspectives," Journal of Productivity Analysis, Springer, vol. 60(3), pages 229-247, December.
    5. Kaixing Huang, 2015. "The Economic Impacts of Global Warming on Agriculture: the Role of Adaptation," School of Economics and Public Policy Working Papers 2015-20, University of Adelaide, School of Economics and Public Policy.
    6. Simone Pieralli, 2019. "Bumper crop or dearth: An economic methodology to identify the disruptive effects of climatic variables on French agriculture [Récolte exceptionnelle ou pénurie : une méthodologie économique pour i," Working Papers hal-02786610, HAL.
    7. Huang, K., 2018. "How Large is the Potential Economic Benefit of Agricultural Adaptation to Climate Change?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277238, International Association of Agricultural Economists.
    8. Kaixing Huang & Nicholas Sim, 2021. "Adaptation May Reduce Climate Damage in Agriculture by Two Thirds," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(1), pages 47-71, February.
    9. Nicky Rogge, 2019. "Regional productivity growth in the EU since 2000: something is better than nothing," Empirical Economics, Springer, vol. 56(2), pages 423-444, February.
    10. Oleg Badunenko & Daniel J. Henderson & Valentin Zelenyuk, 2017. "The Productivity of Nations," CEPA Working Papers Series WP022017, School of Economics, University of Queensland, Australia.
    11. Tao Xiang & Tariq H. Malik & Jack W. Hou & Jiliang Ma, 2022. "The Impact of Climate Change on Agricultural Total Factor Productivity: A Cross-Country Panel Data Analysis, 1961–2013," Agriculture, MDPI, vol. 12(12), pages 1-20, December.
    12. Frederick Quaye & Denis Nadolnyak & Valentina Hartarska, 2018. "Climate Change Impacts on Farmland Values in the Southeast United States," Sustainability, MDPI, vol. 10(10), pages 1-16, September.
    13. Kerekes, Monika, 2007. "Analyzing patterns of economic growth: a production frontier approach," Discussion Papers 2007/15, Free University Berlin, School of Business & Economics.
    14. Eric Njuki & Boris E. Bravo-Ureta, 2019. "Examining irrigation productivity in U.S. agriculture using a single-factor approach," Journal of Productivity Analysis, Springer, vol. 51(2), pages 125-136, June.
    15. Sabrina Auci & Donatella Vignani, 2020. "Climate variability and agriculture in Italy: a stochastic frontier analysis at the regional level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(2), pages 381-409, July.
    16. Van Butsic & Ellen Hanak & Robert G. Valletta, 2008. "Climate change and asset prices: hedonic estimates for North American ski resorts," Working Paper Series 2008-12, Federal Reserve Bank of San Francisco.
    17. Walheer, Barnabé, 2018. "Disaggregation of the cost Malmquist productivity index with joint and output-specific inputs," Omega, Elsevier, vol. 75(C), pages 1-12.
    18. Mike Tsionas & Valentin Zelenyuk, 2021. "Goodness-of-fit in Optimizing Models of Production: A Generalization with a Bayesian Perspective," CEPA Working Papers Series WP182021, School of Economics, University of Queensland, Australia.
    19. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    20. Annalisa Marini, 2019. "The Impact of Weather on Commodity Prices: A Warning for the Future," Discussion Papers 1902, University of Exeter, Department of Economics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:ajagec:v:102:y:2020:i:4:p:1198-1226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1467-8276 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.