Advanced Search
MyIDEAS: Login to save this article or follow this journal

Are VIX futures prices predictable? An empirical investigation

Contents:

Author Info

  • Konstantinidi, Eirini
  • Skiadopoulos, George

Abstract

This paper investigates whether volatility futures prices per se can be forecasted by studying the fast-growing VIX futures market. To this end, alternative model specifications are employed. Point and interval out-of-sample forecasts are constructed and evaluated under various statistical metrics. Next, the economic significance of the forecasts obtained is also assessed by performing trading strategies. Only weak evidence of statistically predictable patterns in the evolution of volatility futures prices is found. No trading strategy yields economically significant profits. Hence, the hypothesis that the VIX volatility futures market is informationally efficient cannot be rejected.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B6V92-4YKFMK7-1/2/20fd3673933215a94c788829c902622e
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal International Journal of Forecasting.

Volume (Year): 27 (2011)
Issue (Month): 2 (April)
Pages: 543-560

as in new window
Handle: RePEc:eee:intfor:v:27:y::i:2:p:543-560

Contact details of provider:
Web page: http://www.elsevier.com/locate/ijforecast

Related research

Keywords: Bootstrapping Interval forecasts Market efficiency Predictability Performance measures VIX Volatility futures;

Other versions of this item:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Bessembinder, Hendrik & Chan, Kalok, 1992. "Time-varying risk premia and forecastable returns in futures markets," Journal of Financial Economics, Elsevier, vol. 32(2), pages 169-193, October.
  2. Bong-Chan, Kho, 1996. "Time-varying risk premia, volatility, and technical trading rule profits: Evidence from foreign currency futures markets," Journal of Financial Economics, Elsevier, vol. 41(2), pages 249-290, June.
  3. Jensen, Michael C., 1978. "Some anomalous evidence regarding market efficiency," Journal of Financial Economics, Elsevier, vol. 6(2-3), pages 95-101.
  4. Allan Timmermann & Halbert White & Ryan Sullivan, 1998. "Data-Snooping, Technical Trading, Rule Performance and the Bootstrap," FMG Discussion Papers dp303, Financial Markets Group.
  5. Amit Goyal & Ivo Welch, 2004. "A Comprehensive Look at the Empirical Performance of Equity Premium Prediction," Yale School of Management Working Papers amz2412, Yale School of Management, revised 01 Jan 2006.
  6. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
  7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-44, January.
  8. Wang, Changyun, 2004. "Futures trading activity and predictable foreign exchange market movements," Journal of Banking & Finance, Elsevier, vol. 28(5), pages 1023-1041, May.
  9. G. William Schwert, 1990. "Why Does Stock Market Volatility Change Over Time?," NBER Working Papers 2798, National Bureau of Economic Research, Inc.
  10. Jo�lle Miffre, 2001. "Efficiency in the Pricing of the FTSE 100 Futures Contract," European Financial Management, European Financial Management Association, vol. 7(1), pages 9-22.
  11. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  12. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-72, June.
  13. Grunbichler, Andreas & Longstaff, Francis A., 1996. "Valuing futures and options on volatility," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 985-1001, July.
  14. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Do Call Prices and the Underlying Stock Always Move in the Same Direction?," Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 549-84.
  15. Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2001. "Effects of parameter estimation on prediction densities: a bootstrap approach," International Journal of Forecasting, Elsevier, vol. 17(1), pages 83-103.
  16. Feng Zhao & Robert Jarrow & Haitao Li, 2004. "Interest Rate Caps Smile Too! But Can the LIBOR Market Models Capture It?," Econometric Society 2004 North American Winter Meetings 431, Econometric Society.
  17. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
  18. Wayne E. Ferson & Sergei Sarkissian & Timothy Simin, 2002. "Spurious Regressions in Financial Economics?," NBER Working Papers 9143, National Bureau of Economic Research, Inc.
  19. Dotsis, George & Psychoyios, Dimitris & Skiadopoulos, George, 2007. "An empirical comparison of continuous-time models of implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 31(12), pages 3584-3603, December.
  20. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
  21. Konstantinidi, Eirini & Skiadopoulos, George & Tzagkaraki, Emilia, 2008. "Can the evolution of implied volatility be forecasted? Evidence from European and US implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2401-2411, November.
  22. Arturo Estrella & Gikas A. Hardouvelis, 1989. "The term structure as a predictor of real economic activity," Research Paper 8907, Federal Reserve Bank of New York.
  23. Taylor, Stephen J, 1992. "Rewards Available to Currency Futures Speculators: Compensation for Risk or Evidence of Inefficient Pricing?," The Economic Record, The Economic Society of Australia, vol. 0(0), pages 105-16, Supplemen.
  24. Ser-Huang Poon & Peter, F. Pope, 2000. "Trading volatility spreads: a test of index option market efficiency," European Financial Management, European Financial Management Association, vol. 6(2), pages 235-260.
  25. Hartzmark, Michael L, 1987. "Returns to Individual Traders of Futures: Aggregate Results," Journal of Political Economy, University of Chicago Press, vol. 95(6), pages 1292-1306, December.
  26. Hartzmark, Michael L, 1991. "Luck versus Forecast Ability: Determinants of Trader Performance in Futures Markets," The Journal of Business, University of Chicago Press, vol. 64(1), pages 49-74, January.
  27. Fama, Eugene F & French, Kenneth R, 1987. "Commodity Futures Prices: Some Evidence on Forecast Power, Premiums,and the Theory of Storage," The Journal of Business, University of Chicago Press, vol. 60(1), pages 55-73, January.
  28. Miffre, Joelle, 2001. "Economic activity and time variation in expected futures returns," Economics Letters, Elsevier, vol. 73(1), pages 73-79, October.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Goulas, Lambros & Skiadopoulos, George, 2012. "Are freight futures markets efficient? Evidence from IMAREX," International Journal of Forecasting, Elsevier, vol. 28(3), pages 644-659.
  2. Dunis, Christian & Kellard, Neil M. & Snaith, Stuart, 2013. "Forecasting EUR–USD implied volatility: The case of intraday data," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4943-4957.
  3. Cathy Chen & Shu-Yu Chen & Sangyeol Lee, 2013. "Bayesian Unit Root Test in Double Threshold Heteroskedastic Models," Computational Economics, Society for Computational Economics, vol. 42(4), pages 471-490, December.
  4. Cheng, Jun & Ibraimi, Meriton & Leippold, Markus & Zhang, Jin E., 2012. "A remark on Lin and Chang's paper ‘Consistent modeling of S&P 500 and VIX derivatives’," Journal of Economic Dynamics and Control, Elsevier, vol. 36(5), pages 708-715.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y::i:2:p:543-560. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.