IDEAS home Printed from https://ideas.repec.org/a/eee/forpol/v109y2019ics1389934119301571.html
   My bibliography  Save this article

Second generation biofuels and the competition for forest raw materials: A partial equilibrium analysis of Sweden

Author

Listed:
  • Bryngemark, Elina

Abstract

In order to reach the renewable energy policy targets in the transport sector, biofuels from forest raw materials (e.g., harvesting residues) can play an important role. However, these raw materials are currently used in both the heat and power (HP) sector and the traditional forest industries. It is essential to understand how these sectors would be affected by an increased penetration of second generation (2G) biofuels. This study investigates price development and resource allocation in the Swedish forest raw materials market in the presence of 5–30 TWh of 2G biofuel production. Sweden is an interesting case study due to its well-developed forest industries and mature district heating sector, something which makes it a suitable country for future 2G biofuel production. A national partial equilibrium model of the forest sector is extended with a 2G biofuel module to address the impacts of such production. The simulation results show increasing forest industry by-product (e.g. sawdust) prices, thus displaying that the 2G biofuel targets lead to increased raw material competition. The higher feedstock prices make the use of forest biomass in the HP sector less profitable, but we find meagre evidence of substitution of fossil fuels for by-products. In this sector, there is instead an increased use of harvesting residues. Fiberboard and particleboard production ceases entirely due to increased input prices. There is also evidence of synergy effects between the sawmill sector and the use of forest raw materials in the HP sector. Higher by-product prices spur sawmills to produce more sawnwood, something that in turn induces forest owners to increase harvest levels. Already in the 5 TWh Bio-SNG scenario, there is an increase in the harvest level, suggesting that this by-product effect kicks in from start.

Suggested Citation

  • Bryngemark, Elina, 2019. "Second generation biofuels and the competition for forest raw materials: A partial equilibrium analysis of Sweden," Forest Policy and Economics, Elsevier, vol. 109(C).
  • Handle: RePEc:eee:forpol:v:109:y:2019:i:c:s1389934119301571
    DOI: 10.1016/j.forpol.2019.102022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1389934119301571
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.forpol.2019.102022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lintunen, Jussi & Uusivuori, Jussi, 2016. "On the economics of forests and climate change: Deriving optimal policies," Journal of Forest Economics, Elsevier, vol. 24(C), pages 130-156.
    2. Levasseur, Annie & Bahn, Olivier & Beloin-Saint-Pierre, Didier & Marinova, Mariya & Vaillancourt, Kathleen, 2017. "Assessing butanol from integrated forest biorefinery: A combined techno-economic and life cycle approach," Applied Energy, Elsevier, vol. 198(C), pages 440-452.
    3. Juanita Rafajlovic & Ryan Cardwell, 2013. "The Effects of a New WTO Agreement on Canada's Chicken Market: A Differentiated Products Modeling Approach," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 61(4), pages 487-507, December.
    4. Pohjola, Johanna & Laturi, Jani & Lintunen, Jussi & Uusivuori, Jussi, 2018. "Immediate and long-run impacts of a forest carbon policy—A market-level assessment with heterogeneous forest owners," Journal of Forest Economics, Elsevier, vol. 32(C), pages 94-105.
    5. Millinger, M. & Ponitka, J. & Arendt, O. & Thrän, D., 2017. "Competitiveness of advanced and conventional biofuels: Results from least-cost modelling of biofuel competition in Germany," Energy Policy, Elsevier, vol. 107(C), pages 394-402.
    6. Kangas, Hanna-Liisa & Lintunen, Jussi & Pohjola, Johanna & Hetemäki, Lauri & Uusivuori, Jussi, 2011. "Investments into forest biorefineries under different price and policy structures," Energy Economics, Elsevier, vol. 33(6), pages 1165-1176.
    7. Carlsson, Mattias, 2012. "Bioenergy from the Swedish Forest Sector - A Partial Equilibrium Analysis of Supply Costs and Implications for the Forest Product Markets," Working Paper Series 2012:3, Swedish University of Agricultural Sciences, Department Economics.
    8. Pettersson, Karin & Wetterlund, Elisabeth & Athanassiadis, Dimitris & Lundmark, Robert & Ehn, Christian & Lundgren, Joakim & Berglin, Niklas, 2015. "Integration of next-generation biofuel production in the Swedish forest industry – A geographically explicit approach," Applied Energy, Elsevier, vol. 154(C), pages 317-332.
    9. Jonsson, Ragnar & Rinaldi, Francesca, 2017. "The impact on global wood-product markets of increasing consumption of wood pellets within the European Union," Energy, Elsevier, vol. 133(C), pages 864-878.
    10. Mäkelä, Matti & Lintunen, Jussi & Kangas, Hanna-Liisa & Uusivuori, Jussi, 2011. "Pellet promotion in the Finnish sawmilling industry: The cost-effectiveness of different policy instruments," Journal of Forest Economics, Elsevier, vol. 17(2), pages 185-196, April.
    11. Nikolay Khabarov & Michael Obersteiner, 2018. "Modeling Global Trade in Phosphate Rock within a Partial Equilibrium Framework," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    12. Zetterholm, Jonas & Pettersson, Karin & Leduc, Sylvain & Mesfun, Sennai & Lundgren, Joakim & Wetterlund, Elisabeth, 2018. "Resource efficiency or economy of scale: Biorefinery supply chain configurations for co-gasification of black liquor and pyrolysis liquids," Applied Energy, Elsevier, vol. 230(C), pages 912-924.
    13. Carriquiry, Miguel A. & Du, Xiaodong & Timilsina, Govinda R., 2011. "Second generation biofuels: Economics and policies," Energy Policy, Elsevier, vol. 39(7), pages 4222-4234, July.
    14. Johnston, Craig M.T. & van Kooten, G. Cornelis, 2016. "Global trade impacts of increasing Europe's bioenergy demand," Journal of Forest Economics, Elsevier, vol. 23(C), pages 27-44.
    15. Leimert, Jonas M. & Neubert, Michael & Treiber, Peter & Dillig, Marius & Karl, Jürgen, 2018. "Combining the Heatpipe Reformer technology with hydrogen-intensified methanation for production of synthetic natural gas," Applied Energy, Elsevier, vol. 217(C), pages 37-46.
    16. Gustavsson, Christer & Hulteberg, Christian, 2016. "Co-production of gasification based biofuels in existing combined heat and power plants – Analysis of production capacity and integration potential," Energy, Elsevier, vol. 111(C), pages 830-840.
    17. Lauri, Pekka & Forsell, Nicklas & Korosuo, Anu & Havlík, Petr & Obersteiner, Michael & Nordin, Annika, 2017. "Impact of the 2°C target on global woody biomass use," Forest Policy and Economics, Elsevier, vol. 83(C), pages 121-130.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lai, Y.Y. & Christley, E. & Kulanovic, A. & Teng, C.C. & Björklund, A. & Nordensvärd, J. & Karakaya, E. & Urban, F., 2022. "Analysing the opportunities and challenges for mitigating the climate impact of aviation: A narrative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. Fuhrmann, Marilene & Dißauer, Christa & Strasser, Christoph & Schmid, Erwin, 2021. "Analysing price cointegration of sawmill by-products in the forest-based sector in Austria," Forest Policy and Economics, Elsevier, vol. 131(C).
    3. Tom Karras & André Brosowski & Daniela Thrän, 2022. "A Review on Supply Costs and Prices of Residual Biomass in Techno-Economic Models for Europe," Sustainability, MDPI, vol. 14(12), pages 1-25, June.
    4. Nwachukwu, Chinedu Maureen & Olofsson, Elias & Lundmark, Robert & Wetterlund, Elisabeth, 2022. "Evaluating fuel switching options in the Swedish iron and steel industry under increased competition for forest biomass," Applied Energy, Elsevier, vol. 324(C).
    5. Ahlström, Johan M. & Walter, Viktor & Göransson, Lisa & Papadokonstantakis, Stavros, 2022. "The role of biomass gasification in the future flexible power system – BECCS or CCU?," Renewable Energy, Elsevier, vol. 190(C), pages 596-605.
    6. Aneta Kulanovic & Johan Nordensvärd, 2021. "Exploring the Political Discursive Lock-Ins on Sustainable Aviation in Sweden," Energies, MDPI, vol. 14(21), pages 1-16, November.
    7. Eirik Ogner Jåstad & Torjus Folsland Bolkesjø & Per Kristian Rørstad & Atle Midttun & Judit Sandquist & Erik Trømborg, 2021. "The Future Role of Forest-Based Biofuels: Industrial Impacts in the Nordic Countries," Energies, MDPI, vol. 14(8), pages 1-24, April.
    8. Furszyfer Del Rio, Dylan D. & Sovacool, Benjamin K. & Griffiths, Steve & Bazilian, Morgan & Kim, Jinsoo & Foley, Aoife M. & Rooney, David, 2022. "Decarbonizing the pulp and paper industry: A critical and systematic review of sociotechnical developments and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    9. Leanda C. Garvie & David J. Lee & Biljana Kulišić, 2024. "Towards a Bioeconomy: Supplying Forest Residues for the Australian Market," Energies, MDPI, vol. 17(2), pages 1-19, January.
    10. Isabel Malico & Ana Cristina Gonçalves, 2021. "Eucalyptus globulus Coppices in Portugal: Influence of Site and Percentage of Residues Collected for Energy," Sustainability, MDPI, vol. 13(11), pages 1-14, May.
    11. Jonas Zetterholm & Elina Bryngemark & Johan Ahlström & Patrik Söderholm & Simon Harvey & Elisabeth Wetterlund, 2020. "Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
    12. Daiga Zute & Valters Samariks & Guntars Šņepsts & Jānis Donis & Āris Jansons, 2023. "Balancing Forest Regulations and Stakeholder Needs in Latvia: Modeling the Long-Term Impacts of Forest Management Strategies on Standing Volume and Carbon Storage," Sustainability, MDPI, vol. 16(1), pages 1-11, December.
    13. Emily Hope & Bruno Gagnon & Vanja Avdić, 2020. "Assessment of the Impact of Climate Change Policies on the Market for Forest Industrial Residues," Sustainability, MDPI, vol. 12(5), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pohjola, Johanna & Laturi, Jani & Lintunen, Jussi & Uusivuori, Jussi, 2018. "Immediate and long-run impacts of a forest carbon policy—A market-level assessment with heterogeneous forest owners," Journal of Forest Economics, Elsevier, vol. 32(C), pages 94-105.
    2. Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.
    3. Jonas Zetterholm & Elina Bryngemark & Johan Ahlström & Patrik Söderholm & Simon Harvey & Elisabeth Wetterlund, 2020. "Economic Evaluation of Large-Scale Biorefinery Deployment: A Framework Integrating Dynamic Biomass Market and Techno-Economic Models," Sustainability, MDPI, vol. 12(17), pages 1-28, September.
    4. Fanny Groundstroem & Sirkku Juhola, 2021. "Using systems thinking and causal loop diagrams to identify cascading climate change impacts on bioenergy supply systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(7), pages 1-48, October.
    5. Lotte Visser & Ric Hoefnagels & Martin Junginger, 2020. "The Potential Contribution of Imported Biomass to Renewable Energy Targets in the EU–the Trade-off between Ambitious Greenhouse Gas Emission Reduction Targets and Cost Thresholds," Energies, MDPI, vol. 13(7), pages 1-30, April.
    6. Harahap, Fumi & Leduc, Sylvain & Mesfun, Sennai & Khatiwada, Dilip & Kraxner, Florian & Silveira, Semida, 2020. "Meeting the bioenergy targets from palm oil based biorefineries: An optimal configuration in Indonesia," Applied Energy, Elsevier, vol. 278(C).
    7. Harahap, Fumi & Silveira, Semida & Khatiwada, Dilip, 2019. "Cost competitiveness of palm oil biodiesel production in Indonesia," Energy, Elsevier, vol. 170(C), pages 62-72.
    8. Nwachukwu, Chinedu Maureen & Olofsson, Elias & Lundmark, Robert & Wetterlund, Elisabeth, 2022. "Evaluating fuel switching options in the Swedish iron and steel industry under increased competition for forest biomass," Applied Energy, Elsevier, vol. 324(C).
    9. Lauri, Pekka & Forsell, Nicklas & Korosuo, Anu & Havlík, Petr & Obersteiner, Michael & Nordin, Annika, 2017. "Impact of the 2°C target on global woody biomass use," Forest Policy and Economics, Elsevier, vol. 83(C), pages 121-130.
    10. Miguel Riviere & Sylvain Caurla, 2020. "Representations of the Forest Sector in Economic Models [Les représentations du secteur forestier dans les modèles économiques]," Post-Print hal-03088084, HAL.
    11. Guo, Jinggang & Gong, Peichen, 2019. "Assessing the impacts of rising fuelwood demand on Swedish forest sector: An intertemporal optimization approach," Forest Policy and Economics, Elsevier, vol. 105(C), pages 91-98.
    12. Jonsson, Ragnar & Rinaldi, Francesca & Pilli, Roberto & Fiorese, Giulia & Hurmekoski, Elias & Cazzaniga, Noemi & Robert, Nicolas & Camia, Andrea, 2021. "Boosting the EU forest-based bioeconomy: Market, climate, and employment impacts," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
    13. Mustapha, Walid Fayez & Trømborg, Erik & Bolkesjø, Torjus Folsland, 2019. "Forest-based biofuel production in the Nordic countries: Modelling of optimal allocation," Forest Policy and Economics, Elsevier, vol. 103(C), pages 45-54.
    14. Brinkman, Marnix L.J. & Wicke, Birka & Faaij, André P.C. & van der Hilst, Floor, 2019. "Projecting socio-economic impacts of bioenergy: Current status and limitations of ex-ante quantification methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    15. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    16. Curci, Ylenia & Mongeau Ospina, Christian A., 2016. "Investigating biofuels through network analysis," Energy Policy, Elsevier, vol. 97(C), pages 60-72.
    17. Zhu, Jianhua & Peng, Yan & Gong, Zhuping & Sun, Yanming & Lai, Chaoan & Wang, Qing & Zhu, Xiaojun & Gan, Zhongxue, 2019. "Dynamic analysis of SNG and PNG supply: The stability and robustness view #," Energy, Elsevier, vol. 185(C), pages 717-729.
    18. Rong Li & Brent Sohngen & Xiaohui Tian, 2022. "Efficiency of forest carbon policies at intensive and extensive margins," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(4), pages 1243-1267, August.
    19. Haji Esmaeili, Seyed Ali & Szmerekovsky, Joseph & Sobhani, Ahmad & Dybing, Alan & Peterson, Tim O., 2020. "Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers," Energy Policy, Elsevier, vol. 138(C).
    20. Kathleen Meisel & Markus Millinger & Karin Naumann & Franziska Müller-Langer & Stefan Majer & Daniela Thrän, 2020. "Future Renewable Fuel Mixes in Transport in Germany under RED II and Climate Protection Targets," Energies, MDPI, vol. 13(7), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:forpol:v:109:y:2019:i:c:s1389934119301571. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/forpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.