IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v179y2019icp1288-1301.html
   My bibliography  Save this article

Testing European goals for the Spanish electricity system using a disaggregated CGE model

Author

Listed:
  • Langarita, Raquel
  • Duarte, Rosa
  • Hewings, Geoffrey
  • Sánchez-Chóliz, Julio

Abstract

This paper addresses the economic and environmental effects of three scenarios of change for the electricity sector in Spain, in line with the European Union targets: (1) to address the low trade with the rest of Europe, increasing the integration with the European network; (2) to enhance environmental sustainability, increasing the use of renewable energy sources, while decreasing the use of brown energy sources; and (3) increasing the competitiveness of the Spanish electricity sector. To this end, we develop a computable general equilibrium model, with 72 productive sectors, eleven of which are energy sectors, where electricity is disaggregated into five production technologies and transmission, distribution, commercialization, and related activities. The model is calibrated on a previously developed input-output table with this detailed disaggregation for Spain for 2013. Our results suggest potential improvements in production and trade, and reductions in CO2 emissions in scenario 2 are also observed.

Suggested Citation

  • Langarita, Raquel & Duarte, Rosa & Hewings, Geoffrey & Sánchez-Chóliz, Julio, 2019. "Testing European goals for the Spanish electricity system using a disaggregated CGE model," Energy, Elsevier, vol. 179(C), pages 1288-1301.
  • Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:1288-1301
    DOI: 10.1016/j.energy.2019.04.175
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421930814X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.175?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rutherford, Thomas F, 1999. "Applied General Equilibrium Modeling with MPSGE as a GAMS Subsystem: An Overview of the Modeling Framework and Syntax," Computational Economics, Springer;Society for Computational Economics, vol. 14(1-2), pages 1-46, October.
    2. Francisco André & M. Cardenete & Esther Velázquez, 2005. "Performing an environmental tax reform in a regional economy. A computable general equilibrium approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 39(2), pages 375-392, June.
    3. Makena Coffman, 2010. "Oil price shocks in an island economy: an analysis of the oil price-macroeconomy relationship," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 44(3), pages 599-620, June.
    4. Jesper Jensen & David Tarr, 2014. "Trade, Exchange Rate, and Energy Pricing Reform in Iran: Potentially Large Efficiency Effects and Gains to the Poor," World Scientific Book Chapters, in: APPLIED TRADE POLICY MODELING IN 16 COUNTRIES Insights and Impacts from World Bank CGE Based Projects, chapter 13, pages 307-326, World Scientific Publishing Co. Pte. Ltd..
    5. de Hauteclocque, Adrien & Rious, Vincent, 2011. "Reconsidering the European regulation of merchant transmission investment in light of the third energy package: The role of dominant generators," Energy Policy, Elsevier, vol. 39(11), pages 7068-7077.
    6. Sancho, Ferran, 2010. "Double dividend effectiveness of energy tax policies and the elasticity of substitution: A CGE appraisal," Energy Policy, Elsevier, vol. 38(6), pages 2927-2933, June.
    7. Akkemik, K. Ali & Oğuz, Fuat, 2011. "Regulation, efficiency and equilibrium: A general equilibrium analysis of liberalization in the Turkish electricity market," Energy, Elsevier, vol. 36(5), pages 3282-3292.
    8. Trieb, Franz & Schillings, Christoph & Pregger, Thomas & O'Sullivan, Marlene, 2012. "Solar electricity imports from the Middle East and North Africa to Europe," Energy Policy, Elsevier, vol. 42(C), pages 341-353.
    9. J. Cansino & M. Cardenete & J. Gonzalez & M. P. Pablo-Romero, 2013. "Economic impacts of solar thermal electricity technology deployment on Andalusian productive activities: a CGE approach," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 50(1), pages 25-47, February.
    10. Devarajan, Shantayanan, 1988. "Natural resources and taxation in computable general equilibrium models of developing countries," Journal of Policy Modeling, Elsevier, vol. 10(4), pages 505-528.
    11. Wing, Ian Sue, 2006. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technologies and the cost of limiting US CO2 emissions," Energy Policy, Elsevier, vol. 34(18), pages 3847-3869, December.
    12. Devarajan, Shantayanan & Hossain, Shaikh I., 1998. "The combined incidence of taxes and public expenditures in the Philippines," World Development, Elsevier, vol. 26(6), pages 963-977, June.
    13. Sáenz de Miera, Gonzalo & del Ri­o González, Pablo & Vizcaino, Ignacio, 2008. "Analysing the impact of renewable electricity support schemes on power prices: The case of wind electricity in Spain," Energy Policy, Elsevier, vol. 36(9), pages 3345-3359, September.
    14. Duarte, Rosa & Langarita, Raquel & Sánchez-Chóliz, Julio, 2017. "The electricity industry in Spain: A structural analysis using a disaggregated input-output model," Energy, Elsevier, vol. 141(C), pages 2640-2651.
    15. Yilmaz, Kamil, 1999. "Optimal export taxes in a multicountry framework," Journal of Development Economics, Elsevier, vol. 60(2), pages 439-465, December.
    16. del Río, Pablo & Unruh, Gregory, 2007. "Overcoming the lock-out of renewable energy technologies in Spain: The cases of wind and solar electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1498-1513, September.
    17. Francisco Miguel & Maria Llop & Antonio Manresa, 2014. "Sectoral productivity gains in two regional economies: key sectors from a supply-side perspective," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 53(3), pages 731-744, November.
    18. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    19. Gooroochurn, Nishaal & Milner, Chris, 2005. "Assessing Indirect Tax Reform in a Tourism-Dependent Developing Country," World Development, Elsevier, vol. 33(7), pages 1183-1200, July.
    20. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2011. "Assessment of China's climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model," Energy Policy, Elsevier, vol. 39(5), pages 2875-2887, May.
    21. Sue Wing, Ian, 2008. "The synthesis of bottom-up and top-down approaches to climate policy modeling: Electric power technology detail in a social accounting framework," Energy Economics, Elsevier, vol. 30(2), pages 547-573, March.
    22. Davood Manzoor & Asghar Shahmoradi & Iman Haqiqi, 2012. "An analysis of energy price reform: a CGE approach," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 36(1), pages 35-54, March.
    23. Cansino, J.M. & Cardenete, M.A. & González-Limón, J.M. & Román, R., 2014. "The economic influence of photovoltaic technology on electricity generation: A CGE (computable general equilibrium) approach for the Andalusian case," Energy, Elsevier, vol. 73(C), pages 70-79.
    24. Machado, Mauricio Marins & de Sousa, Maria Conceição Sampaio & Hewings, Geoffrey, 2016. "Economies of scale and technological progress in electric power production: The case of Brazilian utilities," Energy Economics, Elsevier, vol. 59(C), pages 290-299.
    25. Langarita, Raquel & Sánchez Chóliz, Julio & Sarasa, Cristina & Duarte, Rosa & Jiménez, Sofía, 2017. "Electricity costs in irrigated agriculture: A case study for an irrigation scheme in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1008-1019.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Graça Gomes, João & Medeiros Pinto, José & Xu, Huijin & Zhao, Changying & Hashim, Haslenda, 2020. "Modeling and planning of the electricity energy system with a high share of renewable supply for Portugal," Energy, Elsevier, vol. 211(C).
    2. Parrado-Hernando, Gonzalo & Pfeifer, Antun & Frechoso, Fernando & Miguel González, Luis Javier & Duić, Neven, 2022. "A novel approach to represent the energy system in integrated assessment models," Energy, Elsevier, vol. 258(C).
    3. Fan He & Yang Yang & Xin Liu & Dong Wang & Junping Ji & Zhibin Yi, 2021. "Input–Output Analysis of China’s CO 2 Emissions in 2017 Based on Data of 149 Sectors," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    4. Carmen Ramos Carvajal & Ana Salomé García-Muñiz & Blanca Moreno Cuartas, 2019. "Assessing Socioeconomic Impacts of Integrating Distributed Energy Resources in Electricity Markets through Input-Output Models," Energies, MDPI, vol. 12(23), pages 1-21, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bohlmann, H.R. & Horridge, J.M. & Inglesi-Lotz, R. & Roos, E.L. & Stander, L., 2019. "Regional employment and economic growth effects of South Africa’s transition to low-carbon energy supply mix," Energy Policy, Elsevier, vol. 128(C), pages 830-837.
    2. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    3. Sebastian Rausch and Valerie J. Karplus, 2014. "Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    4. Liang, Qiao-Mei & Fan, Ying & Wei, Yi-Ming, 2007. "Carbon taxation policy in China: How to protect energy- and trade-intensive sectors?," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 311-333.
    5. Xavier Labandeira, Pedro Linares and Miguel Rodriguez, 2009. "An Integrated Approach to Simulate the impacts of Carbon Emissions Trading Schemes," The Energy Journal, International Association for Energy Economics, vol. 0(Special I).
    6. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    7. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2012. "The impacts of China’s household consumption expenditure patterns on energy demand and carbon emissions towards 2050," Energy Policy, Elsevier, vol. 50(C), pages 736-750.
    8. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.
    9. Ramos, Carmen & García, Ana Salomé & Moreno, Blanca & Díaz, Guzmán, 2019. "Small-scale renewable power technologies are an alternative to reach a sustainable economic growth: Evidence from Spain," Energy, Elsevier, vol. 167(C), pages 13-25.
    10. Rodríguez, M. & Teotónio, C. & Roebeling, P. & Fortes, P., 2023. "Targeting energy savings? Better on primary than final energy and less on intensity metrics," Energy Economics, Elsevier, vol. 125(C).
    11. Hübler, Michael & Voigt, Sebastian & Löschel, Andreas, 2014. "Designing an emissions trading scheme for China—An up-to-date climate policy assessment," Energy Policy, Elsevier, vol. 75(C), pages 57-72.
    12. Wang, Peng & Dai, Han-cheng & Ren, Song-yan & Zhao, Dai-qing & Masui, Toshihiko, 2015. "Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong Province of China," Energy, Elsevier, vol. 79(C), pages 212-227.
    13. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2011. "Assessment of China's climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model," Energy Policy, Elsevier, vol. 39(5), pages 2875-2887, May.
    14. He, Yongda & Lin, Boqiang, 2017. "The impact of natural gas price control in China: A computable general equilibrium approach," Energy Policy, Elsevier, vol. 107(C), pages 524-531.
    15. Weng, Yuwei & Cai, Wenjia & Wang, Can, 2021. "Evaluating the use of BECCS and afforestation under China’s carbon-neutral target for 2060," Applied Energy, Elsevier, vol. 299(C).
    16. Lanz, Bruno & Rausch, Sebastian, 2011. "General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis," Energy Economics, Elsevier, vol. 33(5), pages 1035-1047, September.
    17. Gharibnavaz, Mohammad Reza & Waschik, Robert, 2015. "Food and energy subsidy reforms in Iran: A general equilibrium analysis," Journal of Policy Modeling, Elsevier, vol. 37(5), pages 726-741.
    18. Nicholas Rivers & Steven Groves, 2013. "The Welfare Impact of Self-supplied Water Pricing in Canada: A Computable General Equilibrium Assessment," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 55(3), pages 419-445, July.
    19. Makena Coffman & Paul Bernstein, 2013. "Economic Impacts of Inter-Island Energy in Hawaii," Working Papers 2013-16, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    20. Peng Ou & Ruting Huang & Xin Yao, 2016. "Economic Impacts of Power Shortage," Sustainability, MDPI, vol. 8(7), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:179:y:2019:i:c:p:1288-1301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.