IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v42y2012icp341-353.html
   My bibliography  Save this article

Solar electricity imports from the Middle East and North Africa to Europe

Author

Listed:
  • Trieb, Franz
  • Schillings, Christoph
  • Pregger, Thomas
  • O'Sullivan, Marlene

Abstract

The huge solar resources in the MENA countries (Middle East and North Africa), significant improvements in concentrating solar power (CSP) technology and in power transmission technologies, and the urgent need to remove carbon emissions from the European (EU) energy system lead to an increased interest in an EU-MENA electricity grid interconnection. As contribution to the current discussions about DESERTEC, MedGrid and other initiatives this article describes the approach and results of an analysis of possible solar electricity import corridors from MENA to Europe including Turkey. The study is based on solar energy potentials of the MENA countries identified by remote sensing, reviewed performance and cost data of generation and transmission technologies, and geographic data and information systems (GIS) for the spatial analysis. CSP plants combined with high temperature heat storage and high voltage direct current (HVDC) overhead lines and sea cables represent the key technologies for implementing this promising option for renewable energy import/export. The total technical solar power generation potential from remote sensing analysis in the seven MENA countries considered was calculated to about 538,000TWh/yr. This huge potential implies that less than 0.2% of the land suitable for CSP plants would be enough to supply 15% of the electricity demand expected in Europe in the year 2050. A GIS analysis of potential future HVDC corridors led to the description and characterization of 33 possible import routes to main European centers of demand.

Suggested Citation

  • Trieb, Franz & Schillings, Christoph & Pregger, Thomas & O'Sullivan, Marlene, 2012. "Solar electricity imports from the Middle East and North Africa to Europe," Energy Policy, Elsevier, vol. 42(C), pages 341-353.
  • Handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:341-353
    DOI: 10.1016/j.enpol.2011.11.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151100989X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2011.11.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
    2. Trieb, Franz & Müller-Steinhagen, Hans & Kern, Jürgen, 2011. "Financing concentrating solar power in the Middle East and North Africa--Subsidy or investment?," Energy Policy, Elsevier, vol. 39(1), pages 307-317, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peters, Michael & Schmidt, Tobias S. & Wiederkehr, David & Schneider, Malte, 2011. "Shedding light on solar technologies'A techno-economic assessment and its policy implications," Energy Policy, Elsevier, vol. 39(10), pages 6422-6439, October.
    2. Pietzcker, Robert Carl & Stetter, Daniel & Manger, Susanne & Luderer, Gunnar, 2014. "Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power," Applied Energy, Elsevier, vol. 135(C), pages 704-720.
    3. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Audrey Laude & Christian Jonen, 2011. "Biomass and CCS: The influence of the learning effect," Working Papers halshs-00829779, HAL.
    5. Usaola, Julio, 2012. "Participation of CSP plants in the reserve markets: A new challenge for regulators," Energy Policy, Elsevier, vol. 49(C), pages 562-571.
    6. Bolinger, Mark & Wiser, Ryan, 2009. "Wind power price trends in the United States: Struggling to remain competitive in the face of strong growth," Energy Policy, Elsevier, vol. 37(3), pages 1061-1071, March.
    7. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    8. Lovering, Jessica R. & Yip, Arthur & Nordhaus, Ted, 2016. "Historical construction costs of global nuclear power reactors," Energy Policy, Elsevier, vol. 91(C), pages 371-382.
    9. Martín, Helena & de la Hoz, Jordi & Velasco, Guillermo & Castilla, Miguel & García de Vicuña, José Luís, 2015. "Promotion of concentrating solar thermal power (CSP) in Spain: Performance analysis of the period 1998–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1052-1068.
    10. Yao, Xilong & Liu, Yang & Qu, Shiyou, 2015. "When will wind energy achieve grid parity in China? – Connecting technological learning and climate finance," Applied Energy, Elsevier, vol. 160(C), pages 697-704.
    11. Strupeit, Lars & Neij, Lena, 2017. "Cost dynamics in the deployment of photovoltaics: Insights from the German market for building-sited systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 948-960.
    12. Elizabeth Gibson & Tugrul Daim & Edwin Garces & Marina Dabic, 2018. "Technology Foresight: A Bibliometric Analysis to Identify Leading and Emerging Methods," Foresight and STI Governance (Foresight-Russia till No. 3/2015), National Research University Higher School of Economics, vol. 12(1), pages 6-24.
    13. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    14. Boubaker, K., 2012. "Renewable energy in upper North Africa: Present versus 2025-horizon perspectives optimization using a Data Envelopment Analysis (DEA) framework," Renewable Energy, Elsevier, vol. 43(C), pages 364-369.
    15. Bernardos, Eva & López, Ignacio & Rodríguez, Javier & Abánades, Alberto, 2013. "Assessing the potential of hybrid fossil–solar thermal plants for energy policy making: Brayton cycles," Energy Policy, Elsevier, vol. 62(C), pages 99-106.
    16. Wagner Sousa de Oliveira & Antonio Jorge Fernandes, 2012. "Optimization Model for Economic Evaluation of Wind Farms - How to Optimize a Wind Energy Project Economically and Technically," International Journal of Energy Economics and Policy, Econjournals, vol. 2(1), pages 10-20.
    17. Pandey, Rita & Mehra, Meeta Keswani, 2015. "Role of Fiscal Instruments in Promoting Low-carbon Technology Innovation," Working Papers 15/147, National Institute of Public Finance and Policy.
    18. van den Broek, Machteld & Berghout, Niels & Rubin, Edward S., 2015. "The potential of renewables versus natural gas with CO2 capture and storage for power generation under CO2 constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1296-1322.
    19. Laude, Audrey & Jonen, Christian, 2013. "Biomass and CCS: The influence of technical change," Energy Policy, Elsevier, vol. 60(C), pages 916-924.
    20. Zhang, Xiaochun & Ma, Chun & Song, Xia & Zhou, Yuyu & Chen, Weiping, 2016. "The impacts of wind technology advancement on future global energy," Applied Energy, Elsevier, vol. 184(C), pages 1033-1037.

    More about this item

    Keywords

    CSP; HVDC; Desertec;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:42:y:2012:i:c:p:341-353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.