IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v51y2012icp598-604.html
   My bibliography  Save this article

High estimates of supply constrained emissions scenarios for long-term climate risk assessment

Author

Listed:
  • Ward, James D.
  • Mohr, Steve H.
  • Myers, Baden R.
  • Nel, Willem P.

Abstract

The simulated effects of anthropogenic global warming have become important in many fields and most models agree that significant impacts are becoming unavoidable in the face of slow action. Improvements to model accuracy rely primarily on the refinement of parameter sensitivities and on plausible future carbon emissions trajectories. Carbon emissions are the leading cause of global warming, yet current considerations of future emissions do not consider structural limits to fossil fuel supply, invoking a wide range of uncertainty. Moreover, outdated assumptions regarding the future abundance of fossil energy could contribute to misleading projections of both economic growth and climate change vulnerability. Here we present an easily replicable mathematical model that considers fundamental supply-side constraints and demonstrate its use in a stochastic analysis to produce a theoretical upper limit to future emissions. The results show a significant reduction in prior uncertainty around projected long term emissions, and even assuming high estimates of all fossil fuel resources and high growth of unconventional production, cumulative emissions tend to align to the current medium emissions scenarios in the second half of this century. This significant finding provides much-needed guidance on developing relevant emissions scenarios for long term climate change impact studies.

Suggested Citation

  • Ward, James D. & Mohr, Steve H. & Myers, Baden R. & Nel, Willem P., 2012. "High estimates of supply constrained emissions scenarios for long-term climate risk assessment," Energy Policy, Elsevier, vol. 51(C), pages 598-604.
  • Handle: RePEc:eee:enepol:v:51:y:2012:i:c:p:598-604
    DOI: 10.1016/j.enpol.2012.09.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421512007616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2012.09.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nel, Willem P. & Cooper, Christopher J., 2009. "Implications of fossil fuel constraints on economic growth and global warming," Energy Policy, Elsevier, vol. 37(1), pages 166-180, January.
    2. Detlef Vuuren & Jae Edmonds & Mikiko Kainuma & Keywan Riahi & Allison Thomson & Kathy Hibbard & George Hurtt & Tom Kram & Volker Krey & Jean-Francois Lamarque & Toshihiko Masui & Malte Meinshausen & N, 2011. "The representative concentration pathways: an overview," Climatic Change, Springer, vol. 109(1), pages 5-31, November.
    3. J. Annan & J. Hargreaves, 2011. "On the generation and interpretation of probabilistic estimates of climate sensitivity," Climatic Change, Springer, vol. 104(3), pages 423-436, February.
    4. Brandt, Adam R., 2010. "Review of mathematical models of future oil supply: Historical overview and synthesizing critique," Energy, Elsevier, vol. 35(9), pages 3958-3974.
    5. Tverberg, Gail E., 2012. "Oil supply limits and the continuing financial crisis," Energy, Elsevier, vol. 37(1), pages 27-34.
    6. Brecha, Robert J., 2008. "Emission scenarios in the face of fossil-fuel peaking," Energy Policy, Elsevier, vol. 36(9), pages 3492-3504, September.
    7. Nel, Willem P. & van Zyl, Gerhardus, 2010. "Defining limits: Energy constrained economic growth," Applied Energy, Elsevier, vol. 87(1), pages 168-177, January.
    8. Keywan Riahi & Shilpa Rao & Volker Krey & Cheolhung Cho & Vadim Chirkov & Guenther Fischer & Georg Kindermann & Nebojsa Nakicenovic & Peter Rafaj, 2011. "RCP 8.5—A scenario of comparatively high greenhouse gas emissions," Climatic Change, Springer, vol. 109(1), pages 33-57, November.
    9. Mohr, S.H. & Evans, G.M., 2010. "Long term prediction of unconventional oil production," Energy Policy, Elsevier, vol. 38(1), pages 265-276, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    RePEc Biblio mentions

    As found on the RePEc Biblio, the curated bibliography for Economics:
    1. > Environmental and Natural Resource Economics > Climate economics > Emission scenarios

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    2. Xiaoqian Guo & Qiang Yan & Anjian Wang, 2017. "Assessment of Methods for Forecasting Shale Gas Supply in China Based on Economic Considerations," Energies, MDPI, vol. 10(11), pages 1-14, October.
    3. Rusu, Eugen, 2020. "An evaluation of the wind energy dynamics in the Baltic Sea, past and future projections," Renewable Energy, Elsevier, vol. 160(C), pages 350-362.
    4. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    5. Wang, Ke & Feng, Lianyong & Wang, Jianliang & Xiong, Yi & Tverberg, Gail E., 2016. "An oil production forecast for China considering economic limits," Energy, Elsevier, vol. 113(C), pages 586-596.
    6. David McCollum & Nico Bauer & Katherine Calvin & Alban Kitous & Keywan Riahi, 2014. "Fossil resource and energy security dynamics in conventional and carbon-constrained worlds," Climatic Change, Springer, vol. 123(3), pages 413-426, April.
    7. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    8. Ringsmuth, Andrew K. & Landsberg, Michael J. & Hankamer, Ben, 2016. "Can photosynthesis enable a global transition from fossil fuels to solar fuels, to mitigate climate change and fuel-supply limitations?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 134-163.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    2. Capellán-Pérez, Iñigo & Mediavilla, Margarita & de Castro, Carlos & Carpintero, Óscar & Miguel, Luis Javier, 2014. "Fossil fuel depletion and socio-economic scenarios: An integrated approach," Energy, Elsevier, vol. 77(C), pages 641-666.
    3. Robert J. Brecha, 2013. "Ten Reasons to Take Peak Oil Seriously," Sustainability, MDPI, vol. 5(2), pages 1-31, February.
    4. Ritchie, Justin & Dowlatabadi, Hadi, 2017. "Why do climate change scenarios return to coal?," Energy, Elsevier, vol. 140(P1), pages 1276-1291.
    5. Taylor, Chris & Cullen, Brendan & D'Occhio, Michael & Rickards, Lauren & Eckard, Richard, 2018. "Trends in wheat yields under representative climate futures: Implications for climate adaptation," Agricultural Systems, Elsevier, vol. 164(C), pages 1-10.
    6. Wang, Jianliang & Feng, Lianyong & Steve, Mohr & Tang, Xu & Gail, Tverberg E. & Mikael, Höök, 2015. "China's unconventional oil: A review of its resources and outlook for long-term production," Energy, Elsevier, vol. 82(C), pages 31-42.
    7. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    8. Teotónio, Carla & Fortes, Patrícia & Roebeling, Peter & Rodriguez, Miguel & Robaina-Alves, Margarita, 2017. "Assessing the impacts of climate change on hydropower generation and the power sector in Portugal: A partial equilibrium approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 788-799.
    9. Iñigo Capellán-Pérez & Mikel González-Eguino & Iñaki Arto & Alberto Ansuategi & Kishore Dhavala & Pralit Patel & Anil Markandya, 2014. "New climate scenario framework implementation in the GCAM integrated assessment model," Working Papers 2014-04, BC3.
    10. Rye, Craig D. & Jackson, Tim, 2018. "A review of EROEI-dynamics energy-transition models," Energy Policy, Elsevier, vol. 122(C), pages 260-272.
    11. Chavez-Rodriguez, Mauro F. & Szklo, Alexandre & de Lucena, Andre Frossard Pereira, 2015. "Analysis of past and future oil production in Peru under a Hubbert approach," Energy Policy, Elsevier, vol. 77(C), pages 140-151.
    12. Kang, Hyunwoo & Sridhar, Venkataramana & Mills, Bradford F. & Hession, W. Cully & Ogejo, Jactone A., 2019. "Economy-wide climate change impacts on green water droughts based on the hydrologic simulations," Agricultural Systems, Elsevier, vol. 171(C), pages 76-88.
    13. Delannoy, Louis & Longaretti, Pierre-Yves & Murphy, David J. & Prados, Emmanuel, 2021. "Peak oil and the low-carbon energy transition: A net-energy perspective," Applied Energy, Elsevier, vol. 304(C).
    14. Hem H Dholakia & Vimal Mishra & Amit Garg, 2015. "Predicted Increases in Heat related Mortality under Climate Change in Urban India," Working Papers id:7115, eSocialSciences.
    15. Grant R. McDermott, 2021. "Skeptic priors and climate consensus," Climatic Change, Springer, vol. 166(1), pages 1-23, May.
    16. Zhang, Xiao & Li, Hong-Yi & Deng, Zhiqun D. & Leung, L. Ruby & Skalski, John R. & Cooke, Steven J., 2019. "On the variable effects of climate change on Pacific salmon," Ecological Modelling, Elsevier, vol. 397(C), pages 95-106.
    17. Arora, Vipin & Cai, Yiyong, 2014. "U.S. natural gas exports and their global impacts," Applied Energy, Elsevier, vol. 120(C), pages 95-103.
    18. Matsumoto, Ken׳ichi & Andriosopoulos, Kostas, 2016. "Energy security in East Asia under climate mitigation scenarios in the 21st century," Omega, Elsevier, vol. 59(PA), pages 60-71.
    19. Chiari, Luca & Zecca, Antonio, 2011. "Constraints of fossil fuels depletion on global warming projections," Energy Policy, Elsevier, vol. 39(9), pages 5026-5034, September.
    20. San José, Roberto & Pérez, Juan Luis & Pérez, Libia & Gonzalez Barras, Rosa Maria, 2018. "Effects of climate change on the health of citizens modelling urban weather and air pollution," Energy, Elsevier, vol. 165(PA), pages 53-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:51:y:2012:i:c:p:598-604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.