IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i5p1726-1735.html
   My bibliography  Save this article

Ex-post evaluation of European energy models

Author

Listed:
  • Pilavachi, P.A.
  • Dalamaga, Th.
  • Rossetti di Valdalbero, D.
  • Guilmot, J.-F.

Abstract

Various energy-modelling activities are pursued by public authorities, private companies and research institutes with the aim to provide energy forecasts and to assess the impact of energy and environmental policies. Nevertheless, no ex-post evaluations of the results of these modelling activities have been carried out at the European Community level. This paper investigates and compares the assumptions and the results from a European study carried out in the middle of the eighties with the combination of the so-called Modèle de prospective de la demande énergétique a long terme (MEDEE) and Energy flow optimization (EFOM) models with the targeted year of 2000 as presented in the "ENERGY 2000" study. Concretely, assumptions and forecasts are compared with real statistical data. In this way, an evaluation of quantitative tools and model results can be established. The aim of this paper is not to evaluate the quantitative tools themselves but their results and their policy relevance within a frame of 15 years.

Suggested Citation

  • Pilavachi, P.A. & Dalamaga, Th. & Rossetti di Valdalbero, D. & Guilmot, J.-F., 2008. "Ex-post evaluation of European energy models," Energy Policy, Elsevier, vol. 36(5), pages 1726-1735, May.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:5:p:1726-1735
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00025-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lapillonne, B. & Chateau, B., 1981. "The medee models for long term energy demand forecasting," Socio-Economic Planning Sciences, Elsevier, vol. 15(2), pages 53-58.
    2. Das, Anjana & Rossetti di Valdalbero, Domenico & Virdis, Maria R., 2007. "ACROPOLIS: An example of international collaboration in the field of energy modelling to support greenhouse gases mitigation policies," Energy Policy, Elsevier, vol. 35(2), pages 763-771, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scheer, Dirk, 2017. "Communicating energy system modelling to the wider public: An analysis of German media coverage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1389-1398.
    2. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    3. Franco, Sainu & Mandla, Venkata Ravibabu & Ram Mohan Rao, K., 2017. "Urbanization, energy consumption and emissions in the Indian context A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 898-907.
    4. Charlie Wilson & Céline Guivarch & Elmar Kriegler & Bas Ruijven & Detlef P. Vuuren & Volker Krey & Valeria Jana Schwanitz & Erica L. Thompson, 2021. "Evaluating process-based integrated assessment models of climate change mitigation," Climatic Change, Springer, vol. 166(1), pages 1-22, May.
    5. Strachan, Neil & Pye, Steve & Kannan, Ramachandran, 2009. "The iterative contribution and relevance of modelling to UK energy policy," Energy Policy, Elsevier, vol. 37(3), pages 850-860, March.
    6. O' Mahony, Tadhg & Zhou, P. & Sweeney, John, 2013. "Integrated scenarios of energy-related CO2 emissions in Ireland: A multi-sectoral analysis to 2020," Ecological Economics, Elsevier, vol. 93(C), pages 385-397.
    7. Strachan, Neil, 2011. "Business-as-Unusual: Existing policies in energy model baselines," Energy Economics, Elsevier, vol. 33(2), pages 153-160, March.
    8. Aryanpur, V. & Ghahremani, M. & Mamipour, S. & Fattahi, M. & Ó Gallachóir, B. & Bazilian, M.D. & Glynn, J., 2022. "Ex-post analysis of energy subsidy removal through integrated energy systems modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Simoes, Sofia & Fortes, Patrícia & Seixas, Júlia & Huppes, Gjalt, 2015. "Assessing effects of exogenous assumptions in GHG emissions forecasts – a 2020 scenario study for Portugal using the Times energy technology model," Technological Forecasting and Social Change, Elsevier, vol. 94(C), pages 221-235.
    10. Rout, Ullash K., 2011. "Prospects of India's energy and emissions for a long time frame," Energy Policy, Elsevier, vol. 39(9), pages 5647-5663, September.
    11. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    12. Kelly, J. Andrew & Vollebergh, Herman R.J., 2012. "Adaptive Policy Mechanisms for Transboundary Air Pollution Regulation: Reasons and Recommendations," Climate Change and Sustainable Development 128198, Fondazione Eni Enrico Mattei (FEEM).
    13. Michel, David, 2009. "Foxes, hedgehogs, and greenhouse governance: Knowledge, uncertainty, and international policy-making in a warming World," Applied Energy, Elsevier, vol. 86(2), pages 258-264, February.
    14. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
    15. Wachtmeister, Henrik & Henke, Petter & Höök, Mikael, 2018. "Oil projections in retrospect: Revisions, accuracy and current uncertainty," Applied Energy, Elsevier, vol. 220(C), pages 138-153.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
    2. Barbara Schlomann & Clemens Rohde & Wolfgang Eichhammer & Veit Bürger & Daniel Becker, 2013. "Which Role for Market-Oriented Instruments for Achieving Energy Efficiency Targets in Germany?," Energy & Environment, , vol. 24(1-2), pages 27-55, February.
    3. Hickey, Conor & Deane, Paul & McInerney, Celine & Ó Gallachóir, Brian, 2019. "Is there a future for the gas network in a low carbon energy system?," Energy Policy, Elsevier, vol. 126(C), pages 480-493.
    4. Krook Riekkola, Anna & Ahlgren, Erik O. & Söderholm, Patrik, 2011. "Ancillary benefits of climate policy in a small open economy: The case of Sweden," Energy Policy, Elsevier, vol. 39(9), pages 4985-4998, September.
    5. Raventós, Oriol & Dengiz, Thomas & Medjroubi, Wided & Unaichi, Chinonso & Bruckmeier, Andreas & Finck, Rafael, 2022. "Comparison of different methods of spatial disaggregation of electricity generation and consumption time series," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    6. Jablonski, Sophie & Strachan, Neil & Brand, Christian & Bauen, Ausilio, 2010. "The role of bioenergy in the UK's energy future formulation and modelling of long-term UK bioenergy scenarios," Energy Policy, Elsevier, vol. 38(10), pages 5799-5816, October.
    7. Syranidou, Chloi & Koch, Matthias & Matthes, Björn & Winger, Christian & Linßen, Jochen & Rehtanz, Christian & Stolten, Detlef, 2022. "Development of an open framework for a qualitative and quantitative comparison of power system and electricity grid models for Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. Fahlén, E. & Ahlgren, E.O., 2010. "Accounting for external costs in a study of a Swedish district-heating system - An assessment of environmental policies," Energy Policy, Elsevier, vol. 38(9), pages 4909-4920, September.
    9. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    10. Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
    11. Donk, Peter & Sterl, Sebastian & Thiery, Wim & Willems, Patrick, 2023. "Climate-combined energy modelling approach for power system planning towards optimized integration of renewables under potential climate change - The Small Island Developing State perspective," Energy Policy, Elsevier, vol. 177(C).
    12. Strachan, Neil & Pye, Steve & Kannan, Ramachandran, 2009. "The iterative contribution and relevance of modelling to UK energy policy," Energy Policy, Elsevier, vol. 37(3), pages 850-860, March.
    13. Dagoumas, [alpha].S. & Barker, T.S., 2010. "Pathways to a low-carbon economy for the UK with the macro-econometric E3MG model," Energy Policy, Elsevier, vol. 38(6), pages 3067-3077, June.
    14. Chiodi, Alessandro & Gargiulo, Maurizio & Rogan, Fionn & Deane, J.P. & Lavigne, Denis & Rout, Ullash K. & Ó Gallachóir, Brian P., 2013. "Modelling the impacts of challenging 2050 European climate mitigation targets on Ireland’s energy system," Energy Policy, Elsevier, vol. 53(C), pages 169-189.
    15. Fleiter, Tobias & Fehrenbach, Daniel & Worrell, Ernst & Eichhammer, Wolfgang, 2012. "Energy efficiency in the German pulp and paper industry – A model-based assessment of saving potentials," Energy, Elsevier, vol. 40(1), pages 84-99.
    16. Simões, Sofia & Cleto, João & Fortes, Patri­cia & Seixas, Júlia & Huppes, Gjalt, 2008. "Cost of energy and environmental policy in Portuguese CO2 abatement--scenario analysis to 2020," Energy Policy, Elsevier, vol. 36(9), pages 3598-3611, September.
    17. Bhattacharyya, Subhes C. & Timilsina, Govinda R., 2010. "Modelling energy demand of developing countries: Are the specific features adequately captured?," Energy Policy, Elsevier, vol. 38(4), pages 1979-1990, April.
    18. Chiodi, Alessandro & Gargiulo, Maurizio & Deane, J.P. & Lavigne, Denis & Rout, Ullash K. & Ó Gallachóir, Brian P., 2013. "Modelling the impacts of challenging 2020 non-ETS GHG emissions reduction targets on Ireland′s energy system," Energy Policy, Elsevier, vol. 62(C), pages 1438-1452.
    19. Cochran, Jaquelin & Mai, Trieu & Bazilian, Morgan, 2014. "Meta-analysis of high penetration renewable energy scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 246-253.
    20. Strachan, Neil, 2011. "Business-as-Unusual: Existing policies in energy model baselines," Energy Economics, Elsevier, vol. 33(2), pages 153-160, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:5:p:1726-1735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.