IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i9p3598-3611.html
   My bibliography  Save this article

Cost of energy and environmental policy in Portuguese CO2 abatement--scenario analysis to 2020

Author

Listed:
  • Simões, Sofia
  • Cleto, João
  • Fortes, Patri­cia
  • Seixas, Júlia
  • Huppes, Gjalt

Abstract

This paper quantifies the contribution of Portuguese energy policies for total and marginal abatement costs (MAC) for CO2 emissions for 2020. The TIMES_PT optimisation model was used to derive MAC curves from a set of policy scenarios including one or more of the following policies: ban on nuclear power; ban on new coal power plants without carbon sequestration and storage; incentives to natural gas power plants; and a cap on biomass use. The different MAC shows the policies' effects in the potential for CO2 abatement. In 2020, in the most encompassing policy scenario, with all current and planned policies, is possible to abate only up to +35% of 1990 emissions at a cost below 23Â [euro]Â t/CO2. In the more flexible policy scenarios, it is possible to abate up to -10% of 1990 emissions below the same cost. The total energy system costs are 10-13% higher if all policies are implemented--76 to 101Â B[euro]--roughly the equivalent to 2.01-2.65% of the 2005 GDP. Thus, from a CO2 emission mitigation perspective, the existing policies introduce significant inefficiencies, possibly related to other policy goals. The ban on nuclear power is the instrument that has the most significant effect in MAC.

Suggested Citation

  • Simões, Sofia & Cleto, João & Fortes, Patri­cia & Seixas, Júlia & Huppes, Gjalt, 2008. "Cost of energy and environmental policy in Portuguese CO2 abatement--scenario analysis to 2020," Energy Policy, Elsevier, vol. 36(9), pages 3598-3611, September.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:9:p:3598-3611
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00288-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Russ, Peter & Criqui, Patrick, 2007. "Post-Kyoto CO2 emission reduction: The soft landing scenario analysed with POLES and other world models," Energy Policy, Elsevier, vol. 35(2), pages 786-796, February.
    2. Peter Russ & Patrick Criqui, 2007. "Post-Kyoto CO2 emission reduction : the soft landing scenario analysed with POLES and other world models," Post-Print halshs-00078489, HAL.
    3. Das, Anjana & Rossetti di Valdalbero, Domenico & Virdis, Maria R., 2007. "ACROPOLIS: An example of international collaboration in the field of energy modelling to support greenhouse gases mitigation policies," Energy Policy, Elsevier, vol. 35(2), pages 763-771, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Sarmiento & Thorsten Burandt & Konstantin Löffler & Pao-Yu Oei, 2019. "Analyzing Scenarios for the Integration of Renewable Energy Sources in the Mexican Energy System—An Application of the Global Energy System Model (GENeSYS-MOD)," Energies, MDPI, vol. 12(17), pages 1-24, August.
    2. Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015. "Mitigation strategies and energy technology learning: An assessment with the POLES model," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.
    3. Bollen, Johannes, 2015. "The value of air pollution co-benefits of climate policies: Analysis with a global sector-trade CGE model called WorldScan," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 178-191.
    4. Vicki Duscha & Katja Schumacher & Joachim Schleich & Pierre Buisson, 2014. "Costs of meeting international climate targets without nuclear power," Climate Policy, Taylor & Francis Journals, vol. 14(3), pages 327-352, May.
    5. Li, Yanfei & Chang, Youngho, 2015. "Infrastructure investments for power trade and transmission in ASEAN+2: Costs, benefits, long-term contracts and prioritized developments," Energy Economics, Elsevier, vol. 51(C), pages 484-492.
    6. Patrick Criqui & Constantin Ilasca & Emmanuel Prados, 2014. "National Soft Landing CO2 trajectories under global carbon budgets," Working Papers halshs-00980101, HAL.
    7. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Bridging the scales: A conceptual model for coordinated expansion of renewable power generation, transmission and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2687-2695.
    8. Anil Markandaya & Mikel Gonzalez-Eguino & Patrick Criqui & Silvana Mima, 2014. "Low climate stabilisation under diverse growth and convergence scenarios," Post-Print halshs-00872630, HAL.
    9. Mendoza Beltran, Angelica & den Elzen, Michel G.J. & Hof, Andries F. & van Vuuren, Detlef P. & van Vliet, Jasper, 2011. "Exploring the bargaining space within international climate negotiations based on political, economic and environmental considerations," Energy Policy, Elsevier, vol. 39(11), pages 7361-7371.
    10. Markandya, A. & González-Eguino, M. & Criqui, P. & Mima, S., 2014. "Low climate stabilisation under diverse growth and convergence scenarios," Energy Policy, Elsevier, vol. 64(C), pages 288-301.
    11. Kamiński, Jacek, 2012. "The development of market power in the Polish power generation sector: A 10-year perspective," Energy Policy, Elsevier, vol. 42(C), pages 136-147.
    12. Fleiter, Tobias & Worrell, Ernst & Eichhammer, Wolfgang, 2011. "Barriers to energy efficiency in industrial bottom-up energy demand models--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3099-3111, August.
    13. Yang, Chunmeng & Bu, Siqi & Fan, Yi & Wan, Wayne Xinwei & Wang, Ruoheng & Foley, Aoife, 2023. "Data-driven prediction and evaluation on future impact of energy transition policies in smart regions," Applied Energy, Elsevier, vol. 332(C).
    14. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation," Energy Policy, Elsevier, vol. 47(C), pages 282-290.
    15. Sarmiento, Luis & Burandt, Thorsten & Löffler, Konstantin & Oei, Pao-Yu, 2019. "Analyzing Scenarios for the Integration of Renewable Energy Sources in the Mexican Energy System," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 12(2019), pages 1-1.
    16. Yanfei LI & Youngho CHANG, 2014. "Infrastructutre Investments for Power Trade and Transmission in ASEAN+2: Costs, Benefits, Long-Term Contracts, and Prioritised Development," Working Papers DP-2014-21, Economic Research Institute for ASEAN and East Asia (ERIA).
    17. Sinha, Avik, 2016. "Trilateral association between SO2 / NO2 emission, inequality in energy intensity, and economic growth: A case of Indian cities," MPRA Paper 100010, University Library of Munich, Germany.
    18. Andrea Herbst & Felipe Andrés Toro & Felix Reitze & Eberhard Jochem, 2012. "Introduction to Energy Systems Modelling," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 148(II), pages 111-135, June.
    19. A. F. Hof & M. G. J. Elzen & A. Mendoza Beltran, 2016. "The EU 40 % greenhouse gas emission reduction target by 2030 in perspective," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 16(3), pages 375-392, June.
    20. Pilli-Sihvola, Karoliina & Aatola, Piia & Ollikainen, Markku & Tuomenvirta, Heikki, 2010. "Climate change and electricity consumption--Witnessing increasing or decreasing use and costs?," Energy Policy, Elsevier, vol. 38(5), pages 2409-2419, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:9:p:3598-3611. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.