IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v144y2020ics0301421520303475.html
   My bibliography  Save this article

Smart meters and consumer behaviour: Insights from the empirical literature

Author

Listed:
  • Batalla-Bejerano, Joan
  • Trujillo-Baute, Elisa
  • Villa-Arrieta, Manuel

Abstract

This paper summarises the insights to be gained from a systematic literature review of empirical research devoted to behavioural considerations associated with the use of smart meters and energy information feedback. Above and beyond the mass rollout of smart meters, there are various behavioural considerations that can affect the way in which consumers react to information enabling the adaptation of their consumption behaviour in response to dynamic pricing. Indeed, many empirical studies have been conducted in various countries aimed at determining how consumers respond to feedback on their consumption and prices. However, if users fail to demonstrate a pro-active attitude, they cannot hope to take advantage of the opportunities afforded by new technologies. By reporting a systematic analysis of bibliographic references, this article seeks to further understanding as to why consumers behave as they do when managing their demand, a process that, ultimately, is for the benefit of the electrical system, in particular, and of the whole of society, in general. The policy implications that emerge from our analysis highlight the heterogeneity of consumer engagement in demand management programs, depending on the degree of preference satisfaction achieved by means of personalised contract terms and the degree and persistence of consumer change, which are dependent on the cost, frequency and quality of information.

Suggested Citation

  • Batalla-Bejerano, Joan & Trujillo-Baute, Elisa & Villa-Arrieta, Manuel, 2020. "Smart meters and consumer behaviour: Insights from the empirical literature," Energy Policy, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:enepol:v:144:y:2020:i:c:s0301421520303475
    DOI: 10.1016/j.enpol.2020.111610
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520303475
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anna Kowalska-Pyzalska & Katarzyna Byrka, 2019. "Determinants of the Willingness to Energy Monitoring by Residential Consumers: A Case Study in the City of Wroclaw in Poland," Energies, MDPI, vol. 12(5), pages 1-20, March.
    2. Chen, Victor L. & Delmas, Magali A. & Kaiser, William J. & Locke, Stephen L., 2015. "What can we learn from high-frequency appliance-level energy metering? Results from a field experiment," Energy Policy, Elsevier, vol. 77(C), pages 164-175.
    3. Gilbert, Ben & Graff Zivin, Joshua, 2014. "Dynamic salience with intermittent billing: Evidence from smart electricity meters," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 176-190.
    4. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    5. Wang, Yi & Gan, Dahua & Sun, Mingyang & Zhang, Ning & Lu, Zongxiang & Kang, Chongqing, 2019. "Probabilistic individual load forecasting using pinball loss guided LSTM," Applied Energy, Elsevier, vol. 235(C), pages 10-20.
    6. Mette Talseth Solnørdal & Lene Foss, 2018. "Closing the Energy Efficiency Gap—A Systematic Review of Empirical Articles on Drivers to Energy Efficiency in Manufacturing Firms," Energies, MDPI, vol. 11(3), pages 1-30, February.
    7. Adnane Kendel & Nathalie Lazaric, 2015. "The diffusion of smart meters in France: A discussion of the empirical evidence and the implications for smart cities," Post-Print halshs-01246427, HAL.
    8. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2014. "Feeding back about eco-feedback: How do consumers use and respond to energy monitors?," Energy Policy, Elsevier, vol. 73(C), pages 138-146.
    9. Thorsnes, Paul & Williams, John & Lawson, Rob, 2012. "Consumer responses to time varying prices for electricity," Energy Policy, Elsevier, vol. 49(C), pages 552-561.
    10. Asensio, Omar Isaac & Delmas, Magali A., 2016. "The dynamics of behavior change: Evidence from energy conservation," Journal of Economic Behavior & Organization, Elsevier, vol. 126(PA), pages 196-212.
    11. Oltra, Christian & Boso, Alex & Espluga, Josep & Prades, Ana, 2013. "A qualitative study of users' engagement with real-time feedback from in-house energy consumption displays," Energy Policy, Elsevier, vol. 61(C), pages 788-792.
    12. Frederiks, Elisha R. & Stenner, Karen & Hobman, Elizabeth V., 2015. "Household energy use: Applying behavioural economics to understand consumer decision-making and behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1385-1394.
    13. Schultz, P. Wesley & Estrada, Mica & Schmitt, Joseph & Sokoloski, Rebecca & Silva-Send, Nilmini, 2015. "Using in-home displays to provide smart meter feedback about household electricity consumption: A randomized control trial comparing kilowatts, cost, and social norms," Energy, Elsevier, vol. 90(P1), pages 351-358.
    14. Torriti, Jacopo, 2012. "Price-based demand side management: Assessing the impacts of time-of-use tariffs on residential electricity demand and peak shifting in Northern Italy," Energy, Elsevier, vol. 44(1), pages 576-583.
    15. Chen, Jiayu & Jain, Rishee K. & Taylor, John E., 2013. "Block Configuration Modeling: A novel simulation model to emulate building occupant peer networks and their impact on building energy consumption," Applied Energy, Elsevier, vol. 105(C), pages 358-368.
    16. Quentin Coutellier & Greer Gosnell & Ralf Martin & Mirabelle Muûls & Goran Strbac & Mingyang Sun & Simon Tindermans, 2019. "Making smart meters smarter the smart way," CEP Discussion Papers dp1602, Centre for Economic Performance, LSE.
    17. Anderson, Kyle & Song, Kwonsik & Lee, SangHyun & Krupka, Erin & Lee, Hyunsoo & Park, Moonseo, 2017. "Longitudinal analysis of normative energy use feedback on dormitory occupants," Applied Energy, Elsevier, vol. 189(C), pages 623-639.
    18. Bartusch, Cajsa & Wallin, Fredrik & Odlare, Monica & Vassileva, Iana & Wester, Lars, 2011. "Introducing a demand-based electricity distribution tariff in the residential sector: Demand response and customer perception," Energy Policy, Elsevier, vol. 39(9), pages 5008-5025, September.
    19. Gans, Will & Alberini, Anna & Longo, Alberto, 2013. "Smart meter devices and the effect of feedback on residential electricity consumption: Evidence from a natural experiment in Northern Ireland," Energy Economics, Elsevier, vol. 36(C), pages 729-743.
    20. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9-10), pages 1082-1095, October.
    21. Katrina Jessoe & David Rapson, 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential Energy Use," American Economic Review, American Economic Association, vol. 104(4), pages 1417-1438, April.
    22. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2013. "Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term," Energy Policy, Elsevier, vol. 52(C), pages 126-134.
    23. Massimo, Filippini, 2011. "Short- and long-run time-of-use price elasticities in Swiss residential electricity demand," Energy Policy, Elsevier, vol. 39(10), pages 5811-5817, October.
    24. Schleich, Joachim & Klobasa, Marian & Gölz, Sebastian & Brunner, Marc, 2013. "Effects of feedback on residential electricity demand—Findings from a field trial in Austria," Energy Policy, Elsevier, vol. 61(C), pages 1097-1106.
    25. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    26. Gordon Rausser & Wadim Strielkowski & Dalia Å treimikienÄ—, 2018. "Smart meters and household electricity consumption: A case study in Ireland," Energy & Environment, , vol. 29(1), pages 131-146, February.
    27. Ek, Kristina & Söderholm, Patrik, 2010. "The devil is in the details: Household electricity saving behavior and the role of information," Energy Policy, Elsevier, vol. 38(3), pages 1578-1587, March.
    28. Ivanov, Chris & Getachew, Lullit & Fenrick, Steve A. & Vittetoe, Bethany, 2013. "Enabling technologies and energy savings: The case of EnergyWise Smart Meter Pilot of Connexus Energy," Utilities Policy, Elsevier, vol. 26(C), pages 76-84.
    29. Schleich, Joachim & Faure, Corinne & Klobasa, Marian, 2017. "Persistence of the effects of providing feedback alongside smart metering devices on household electricity demand," Energy Policy, Elsevier, vol. 107(C), pages 225-233.
    30. Valeria Di Cosmo, Sean Lyons, and Anne Nolan, 2014. "Estimating the Impact of Time-of-Use Pricing on Irish Electricity Demand," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    31. Buchanan, Kathryn & Banks, Nick & Preston, Ian & Russo, Riccardo, 2016. "The British public’s perception of the UK smart metering initiative: Threats and opportunities," Energy Policy, Elsevier, vol. 91(C), pages 87-97.
    32. Campillo, Javier & Dahlquist, Erik & Wallin, Fredrik & Vassileva, Iana, 2016. "Is real-time electricity pricing suitable for residential users without demand-side management?," Energy, Elsevier, vol. 109(C), pages 310-325.
    33. Delmas, Magali A. & Lessem, Neil, 2014. "Saving power to conserve your reputation? The effectiveness of private versus public information," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 353-370.
    34. Vallés, Mercedes & Bello, Antonio & Reneses, Javier & Frías, Pablo, 2018. "Probabilistic characterization of electricity consumer responsiveness to economic incentives," Applied Energy, Elsevier, vol. 216(C), pages 296-310.
    35. Ellegård, Kajsa & Palm, Jenny, 2011. "Visualizing energy consumption activities as a tool for making everyday life more sustainable," Applied Energy, Elsevier, vol. 88(5), pages 1920-1926, May.
    36. Allcott, Hunt & Rogers, Todd T, 2012. "How Long Do Treatment Effects Last? Persistence and Durability of a Descriptive Norms Intervention's Effect on Energy Conservation," Scholarly Articles 9804492, Harvard Kennedy School of Government.
    37. Ahmad Faruqui, Sanem Sergici, and Lamine Akaba, 2014. "The Impact of Dynamic Pricing on Residential and Small Commercial and Industrial Usage: New Experimental Evidence from Connecticut," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    38. Allcott, Hunt & Rogers, Todd, 2012. "How Long Do Treatment Effects Last? Persistence and Durability of a Descriptive Norms Intervention's Effect on Energy Conservation," Working Paper Series rwp12-045, Harvard University, John F. Kennedy School of Government.
    39. Hunt Allcott & Todd Rogers, 2014. "The Short-Run and Long-Run Effects of Behavioral Interventions: Experimental Evidence from Energy Conservation," American Economic Review, American Economic Association, vol. 104(10), pages 3003-3037, October.
    40. Ian Ayres & Sophie Raseman & Alice Shih, 2009. "Evidence from Two Large Field Experiments that Peer Comparison Feedback Can Reduce Residential Energy Usage," NBER Working Papers 15386, National Bureau of Economic Research, Inc.
    41. Anderson, Kyle & Lee, SangHyun, 2016. "An empirically grounded model for simulating normative energy use feedback interventions," Applied Energy, Elsevier, vol. 173(C), pages 272-282.
    42. Allcott, Hunt, 2011. "Social norms and energy conservation," Journal of Public Economics, Elsevier, vol. 95(9), pages 1082-1095.
    43. Hartway, Rob & Price, Snuller & Woo, C.K, 1999. "Smart meter, customer choice and profitable time-of-use rate option," Energy, Elsevier, vol. 24(10), pages 895-903.
    44. Schleich, Joachim & Klobasa, Marian & Brunner, Marc & Gölz, Sebastian & Götz, Konrad, 2011. "Smart metering in Germany and Austria: Results of providing feedback information in a field trial," Working Papers "Sustainability and Innovation" S6/2011, Fraunhofer Institute for Systems and Innovation Research (ISI).
    45. Eid, Cherrelle & Koliou, Elta & Valles, Mercedes & Reneses, Javier & Hakvoort, Rudi, 2016. "Time-based pricing and electricity demand response: Existing barriers and next steps," Utilities Policy, Elsevier, vol. 40(C), pages 15-25.
    46. Wang, Qingbin & Lewandowski, Samantha, 2016. "Are Smart Meters Being Used Smartly? A Case Study of Residential Electricity Customers in Vermont," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 236144, Agricultural and Applied Economics Association.
    47. Ellabban, Omar & Abu-Rub, Haitham, 2016. "Smart grid customers' acceptance and engagement: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1285-1298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Raymond & Woo, Chi-Keung & Cox, Kevin, 2021. "How price-responsive is residential retail electricity demand in the US?," Energy, Elsevier, vol. 232(C).
    2. Morell-Dameto, Nicolás & Chaves-Ávila, José Pablo & Gómez San Román, Tomás & Schittekatte, Tim, 2023. "Forward-looking dynamic network charges for real-world electricity systems: A Slovenian case study," Energy Economics, Elsevier, vol. 125(C).
    3. Jonatan Pinkse & René Bohnsack, 2021. "Sustainable product innovation and changing consumer behavior: Sustainability affordances as triggers of adoption and usage," Business Strategy and the Environment, Wiley Blackwell, vol. 30(7), pages 3120-3130, November.
    4. Nikolaos Iliopoulos & Motoharu Onuki & Miguel Esteban, 2021. "Shedding Light on the Factors That Influence Residential Demand Response in Japan," Energies, MDPI, vol. 14(10), pages 1-23, May.
    5. Fouquet, Roger & Hippe, Ralph, 2022. "Twin transitions of decarbonisation and digitalisation: a historical perspective on energy and information in European economies," LSE Research Online Documents on Economics 115544, London School of Economics and Political Science, LSE Library.
    6. Favero, Filippo & Grossi, Luigi, 2023. "Analysis of individual natural gas consumption and price elasticity: Evidence from billing data in Italy," Energy Economics, Elsevier, vol. 118(C).
    7. Guo, Bowei & Weeks, Melvyn, 2022. "Dynamic tariffs, demand response, and regulation in retail electricity markets," Energy Economics, Elsevier, vol. 106(C).
    8. Dana Abi Ghanem & Tracey Crosbie, 2021. "The Transition to Clean Energy: Are People Living in Island Communities Ready for Smart Grids and Demand Response?," Energies, MDPI, vol. 14(19), pages 1-26, September.
    9. Ahir, Rajesh K. & Chakraborty, Basab, 2021. "A meta-analytic approach for determining the success factors for energy conservation," Energy, Elsevier, vol. 230(C).
    10. Adnan Khattak & Rasool Bukhsh & Sheraz Aslam & Ayman Yafoz & Omar Alghushairy & Raed Alsini, 2022. "A Hybrid Deep Learning-Based Model for Detection of Electricity Losses Using Big Data in Power Systems," Sustainability, MDPI, vol. 14(20), pages 1-20, October.
    11. Pereira, Diogo Santos & Marques, António Cardoso, 2023. "Are dynamic tariffs effective in reducing energy poverty? Empirical evidence from US households," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    2. Buckley, Penelope, 2020. "Prices, information and nudges for residential electricity conservation: A meta-analysis," Ecological Economics, Elsevier, vol. 172(C).
    3. Strong, Derek Ryan, 2017. "The Early Diffusion of Smart Meters in the US Electric Power Industry," Thesis Commons 7zprk, Center for Open Science.
    4. Cardella, Eric & Ewing, Brad & Williams, Ryan Blake, 2018. "Green is Good – The Impact of Information Nudges on the Adoption of Voluntary Green Power Plans," 2018 Annual Meeting, February 2-6, 2018, Jacksonville, Florida 266583, Southern Agricultural Economics Association.
    5. Shirley Pon, 2017. "The Effect of Information on TOU Electricity Use: an Irish residential study," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    6. Weber, Sylvain & Puddu, Stefano & Pacheco, Diana, 2017. "Move it! How an electric contest motivates households to shift their load profile," Energy Economics, Elsevier, vol. 68(C), pages 255-270.
    7. Yash Chawla & Anna Kowalska-Pyzalska, 2019. "Public Awareness and Consumer Acceptance of Smart Meters among Polish Social Media Users," Energies, MDPI, vol. 12(14), pages 1-27, July.
    8. Ruokamo, Enni & Meriläinen, Teemu & Karhinen, Santtu & Räihä, Jouni & Suur-Uski, Päivi & Timonen, Leila & Svento, Rauli, 2022. "The effect of information nudges on energy saving: Observations from a randomized field experiment in Finland," Energy Policy, Elsevier, vol. 161(C).
    9. Anna Kowalska-Pyzalska & Katarzyna Byrka, 2019. "Determinants of the Willingness to Energy Monitoring by Residential Consumers: A Case Study in the City of Wroclaw in Poland," Energies, MDPI, vol. 12(5), pages 1-20, March.
    10. Bernadeta Gołębiowska & Anna Bartczak & Wiktor Budziński, 2019. "Impact of social comparison on DSM in Poland," Working Papers 2019-10, Faculty of Economic Sciences, University of Warsaw.
    11. Bernadeta Gołębiowska & Anna Bartczak & Mikołaj Czajkowski, 2020. "Energy demand management and social norms – the case study in Poland," Working Papers 2020-25, Faculty of Economic Sciences, University of Warsaw.
    12. Anna Kowalska-Pyzalska & Katarzyna Byrka & Jakub Serek, 2020. "How to Foster the Adoption of Electricity Smart Meters? A Longitudinal Field Study of Residential Consumers," Energies, MDPI, vol. 13(18), pages 1-19, September.
    13. Chen, Victor L. & Delmas, Magali A. & Locke, Stephen L. & Singh, Amarjeet, 2017. "Information strategies for energy conservation: A field experiment in India," Energy Economics, Elsevier, vol. 68(C), pages 215-227.
    14. Asmare, Fissha & Jaraitė, Jūratė & Kažukauskas, Andrius, 2021. "The effect of descriptive information provision on electricity consumption: Experimental evidence from Lithuania," Energy Economics, Elsevier, vol. 104(C).
    15. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Hobman, Elizabeth V. & Frederiks, Elisha R. & Stenner, Karen & Meikle, Sarah, 2016. "Uptake and usage of cost-reflective electricity pricing: Insights from psychology and behavioural economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 455-467.
    17. Crago, Christine L. & Spraggon, John M. & Hunter, Elizabeth, 2020. "Motivating non-ratepaying households with feedback and social nudges: A cautionary tale," Energy Policy, Elsevier, vol. 145(C).
    18. Giraudet, Louis-Gaëtan, 2020. "Energy efficiency as a credence good: A review of informational barriers to energy savings in the building sector," Energy Economics, Elsevier, vol. 87(C).
    19. Asensio, Omar Isaac & Delmas, Magali A., 2016. "The dynamics of behavior change: Evidence from energy conservation," Journal of Economic Behavior & Organization, Elsevier, vol. 126(PA), pages 196-212.
    20. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.

    More about this item

    Keywords

    Smart meter; Demand side response; Decarbonisation; Consumer empowerment; Behavioural economics;
    All these keywords.

    JEL classification:

    • D9 - Microeconomics - - Micro-Based Behavioral Economics
    • P18 - Political Economy and Comparative Economic Systems - - Capitalist Economies - - - Energy; Environment
    • P48 - Political Economy and Comparative Economic Systems - - Other Economic Systems - - - Legal Institutions; Property Rights; Natural Resources; Energy; Environment; Regional Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:144:y:2020:i:c:s0301421520303475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.