IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v91y2016icp87-97.html
   My bibliography  Save this article

The British public’s perception of the UK smart metering initiative: Threats and opportunities

Author

Listed:
  • Buchanan, Kathryn
  • Banks, Nick
  • Preston, Ian
  • Russo, Riccardo

Abstract

Consumer acceptance of smart meters remains crucial in achieving the potential carbon emission reductions offered by advanced metering infrastructures. Given this, the present research used deliberative focus groups to examine what is needed to secure acceptance and engagement from domestic consumers with services, products and ‘offers’ in smarter power systems. Our findings suggest that consumers are able to identify not just threats relating to smart metering initiatives but opportunities as well. In particular, our focus group participants responded positively to the idea of an automated system that could be used to achieve energy savings in combination with time-of-use tariffs. We conclude by outlining suggestions for policy recommendations that may help consumer acceptance of smart meter enabled services be more readily achieved.

Suggested Citation

  • Buchanan, Kathryn & Banks, Nick & Preston, Ian & Russo, Riccardo, 2016. "The British public’s perception of the UK smart metering initiative: Threats and opportunities," Energy Policy, Elsevier, vol. 91(C), pages 87-97.
  • Handle: RePEc:eee:enepol:v:91:y:2016:i:c:p:87-97
    DOI: 10.1016/j.enpol.2016.01.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421516300039
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2016.01.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alexa Spence & Christina Demski & Catherine Butler & Karen Parkhill & Nick Pidgeon, 2015. "Public perceptions of demand-side management and a smarter energy future," Nature Climate Change, Nature, vol. 5(6), pages 550-554, June.
    2. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2014. "Feeding back about eco-feedback: How do consumers use and respond to energy monitors?," Energy Policy, Elsevier, vol. 73(C), pages 138-146.
    3. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "Social barriers to the adoption of smart homes," Energy Policy, Elsevier, vol. 63(C), pages 363-374.
    4. Burchell, Kevin & Rettie, Ruth & Roberts, Tom C., 2016. "Householder engagement with energy consumption feedback: the role of community action and communications," Energy Policy, Elsevier, vol. 88(C), pages 178-186.
    5. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2015. "The question of energy reduction: The problem(s) with feedback," Energy Policy, Elsevier, vol. 77(C), pages 89-96.
    6. Amos Tversky & Daniel Kahneman, 1991. "Loss Aversion in Riskless Choice: A Reference-Dependent Model," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 106(4), pages 1039-1061.
    7. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2010. "Making energy visible: A qualitative field study of how householders interact with feedback from smart energy monitors," Energy Policy, Elsevier, vol. 38(10), pages 6111-6119, October.
    8. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2013. "Keeping energy visible? Exploring how householders interact with feedback from smart energy monitors in the longer term," Energy Policy, Elsevier, vol. 52(C), pages 126-134.
    9. Krishnamurti, Tamar & Schwartz, Daniel & Davis, Alexander & Fischhoff, Baruch & de Bruin, Wändi Bruine & Lave, Lester & Wang, Jack, 2012. "Preparing for smart grid technologies: A behavioral decision research approach to understanding consumer expectations about smart meters," Energy Policy, Elsevier, vol. 41(C), pages 790-797.
    10. Alexandra-Gwyn Paetz & Elisabeth Dütschke & Wolf Fichtner, 2012. "Smart Homes as a Means to Sustainable Energy Consumption: A Study of Consumer Perceptions," Journal of Consumer Policy, Springer, vol. 35(1), pages 23-41, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anna Kowalska-Pyzalska & Katarzyna Byrka, 2019. "Determinants of the Willingness to Energy Monitoring by Residential Consumers: A Case Study in the City of Wroclaw in Poland," Energies, MDPI, vol. 12(5), pages 1-20, March.
    2. Valor, Carmen & Escudero, Carmen & Labajo, Victoria & Cossent, Rafael, 2019. "Effective design of domestic energy efficiency displays: A proposed architecture based on empirical evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    3. Hanna Mela & Juha Peltomaa & Marja Salo & Kirsi Mäkinen & Mikael Hildén, 2018. "Framing Smart Meter Feedback in Relation to Practice Theory," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    4. David Fredericks & Zhong Fan & Sandra Woolley & Ed de Quincey & Mike Streeton, 2020. "A Decade On, How Has the Visibility of Energy Changed? Energy Feedback Perceptions from UK Focus Groups," Energies, MDPI, vol. 13(10), pages 1-17, May.
    5. Foulds, Chris & Robison, Rosalyn A.V. & Macrorie, Rachel, 2017. "Energy monitoring as a practice: Investigating use of the iMeasure online energy feedback tool," Energy Policy, Elsevier, vol. 104(C), pages 194-202.
    6. Penelope Buckley, 2020. "Prices, information and nudges for residential electricity conservation : A meta-analysis," Post-Print hal-02500507, HAL.
    7. Anna Kowalska-Pyzalska & Katarzyna Byrka & Jakub Serek, 2020. "How to Foster the Adoption of Electricity Smart Meters? A Longitudinal Field Study of Residential Consumers," Energies, MDPI, vol. 13(18), pages 1-19, September.
    8. Yash Chawla & Anna Kowalska-Pyzalska & Widayat Widayat, 2019. "Consumer Willingness and Acceptance of Smart Meters in Indonesia," Resources, MDPI, vol. 8(4), pages 1-23, November.
    9. Yash Chawla & Anna Kowalska-Pyzalska, 2019. "Public Awareness and Consumer Acceptance of Smart Meters among Polish Social Media Users," Energies, MDPI, vol. 12(14), pages 1-27, July.
    10. Christine Milchram & Geerten Van de Kaa & Neelke Doorn & Rolf Künneke, 2018. "Moral Values as Factors for Social Acceptance of Smart Grid Technologies," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    11. Buckley, Penelope, 2020. "Prices, information and nudges for residential electricity conservation: A meta-analysis," Ecological Economics, Elsevier, vol. 172(C).
    12. Brown, Christopher J. & Markusson, Nils, 2019. "The responses of older adults to smart energy monitors," Energy Policy, Elsevier, vol. 130(C), pages 218-226.
    13. Attour, Amel & Baudino, Marco & Krafft, Jackie & Lazaric, Nathalie, 2020. "Determinants of energy tracking application use at the city level: Evidence from France," Energy Policy, Elsevier, vol. 147(C).
    14. Walter Salas-Zapata & Anny Posada-Castaño & Diana Mejía-Durango, 2021. "An explanation of the behavioral origin of moderation in the use of natural resources: a meta-synthesis study," Environment Systems and Decisions, Springer, vol. 41(4), pages 487-500, December.
    15. Petra Mesarić & Damira Đukec & Slavko Krajcar, 2017. "Exploring the Potential of Energy Consumers in Smart Grid Using Focus Group Methodology," Sustainability, MDPI, vol. 9(8), pages 1-17, August.
    16. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    17. Buchanan, Kathryn & Russo, Riccardo & Anderson, Ben, 2015. "The question of energy reduction: The problem(s) with feedback," Energy Policy, Elsevier, vol. 77(C), pages 89-96.
    18. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "Social barriers to the adoption of smart homes," Energy Policy, Elsevier, vol. 63(C), pages 363-374.
    19. Alberts, Genevieve & Gurguc, Zeynep & Koutroumpis, Pantelis & Martin, Ralf & Muûls, Mirabelle & Napp, Tamaryn, 2016. "Competition and norms: A self-defeating combination?," Energy Policy, Elsevier, vol. 96(C), pages 504-523.
    20. Chalal, M.L. & Medjdoub, B. & Bezai, N. & Bull, R. & Zune, M., 2022. "Visualisation in energy eco-feedback systems: A systematic review of good practice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:91:y:2016:i:c:p:87-97. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.