IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v138y2020ics0301421519306469.html
   My bibliography  Save this article

The geopolitics of renewables: New board, new game

Author

Listed:
  • Scholten, Daniel
  • Bazilian, Morgan
  • Overland, Indra
  • Westphal, Kirsten

Abstract

This policy perspective sums up the main input of four members of the Research Panel for IRENA's Global Commission on the Geopolitics of the Energy Transformation. The geographic and technical characteristics of renewable energy systems are fundamentally different from those of coal, oil, and natural gas. This has implications for interstate energy relations and will require early attention if states are to exploit opportunities and address challenges. We point to six clusters of renewables' geopolitical implications that will manifest themselves over different time horizons. Overall, a generally positive disruption is foreseen, but also one that raises new energy security challenges. Moreover, while renewables will eventually render energy relations more horizontal and polycentric, achieving a smooth transition will not be easy. Renewables alter arenas of energy interaction, transforming markets and shifting trade partners, and reshape patterns of cooperation and conflict among countries. One possible outcome is a world of continental-sized grid communities made up of prosumer countries that continuously strategize between secure domestic production and cheap imports. Political action is required to manage, inter alia, industrial competition, stranded assets, availability of electricity and storage capacity, critical materials, and rivalry over ownership of key infrastructure assets.

Suggested Citation

  • Scholten, Daniel & Bazilian, Morgan & Overland, Indra & Westphal, Kirsten, 2020. "The geopolitics of renewables: New board, new game," Energy Policy, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:enepol:v:138:y:2020:i:c:s0301421519306469
    DOI: 10.1016/j.enpol.2019.111059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519306469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.111059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morgan Bazilian & Benjamin Sovacool & Todd Moss, 2017. "Rethinking Energy Statecraft: United States Foreign Policy and the Changing Geopolitics of Energy," Global Policy, London School of Economics and Political Science, vol. 8(3), pages 417-420, September.
    2. Haas, R. & Eichhammer, W. & Huber, C. & Langniss, O. & Lorenzoni, A. & Madlener, R. & Menanteau, P. & Morthorst, P. -E. & Martins, A. & Oniszk, A. & Schleich, J. & Smith, A. & Vass, Z. & Verbruggen, A, 2004. "How to promote renewable energy systems successfully and effectively," Energy Policy, Elsevier, vol. 32(6), pages 833-839, April.
    3. Scholten, Daniel & Bosman, Rick, 2016. "The geopolitics of renewables; exploring the political implications of renewable energy systems," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 273-283.
    4. Johansson, Bengt, 2013. "Security aspects of future renewable energy systems–A short overview," Energy, Elsevier, vol. 61(C), pages 598-605.
    5. O'Sullivan, Meghan & Overland, Indra & Sandalow, David, 2017. "The Geopolitics of Renewable Energy," Working Paper Series rwp17-027, Harvard University, John F. Kennedy School of Government.
    6. Verbong, Geert & Geels, Frank, 2007. "The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960-2004)," Energy Policy, Elsevier, vol. 35(2), pages 1025-1037, February.
    7. Konstantelos, Ioannis & Pudjianto, Danny & Strbac, Goran & De Decker, Jan & Joseph, Pieter & Flament, Aurore & Kreutzkamp, Paul & Genoese, Fabio & Rehfeldt, Leif & Wallasch, Anna-Kathrin & Gerdes, Ger, 2017. "Integrated North Sea grids: The costs, the benefits and their distribution between countries," Energy Policy, Elsevier, vol. 101(C), pages 28-41.
    8. Bridge, Gavin & Bouzarovski, Stefan & Bradshaw, Michael & Eyre, Nick, 2013. "Geographies of energy transition: Space, place and the low-carbon economy," Energy Policy, Elsevier, vol. 53(C), pages 331-340.
    9. Ellabban, Omar & Abu-Rub, Haitham & Blaabjerg, Frede, 2014. "Renewable energy resources: Current status, future prospects and their enabling technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 748-764.
    10. Pierri, Erika & Binder, Ole & Hemdan, Nasser G.A. & Kurrat, Michael, 2017. "Challenges and opportunities for a European HVDC grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 427-456.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gallaher, Adam & Graziano, Marcello & Fiaschetti, Maurizio, 2021. "Legacy and shockwaves: A spatial analysis of strengthening resilience of the power grid in Connecticut," Energy Policy, Elsevier, vol. 159(C).
    2. Nadkarni, Kabir & Lefsrud, Lianne M. & Schiffner, Daniel & Banks, Jonathan, 2022. "Converting oil wells to geothermal resources: Roadmaps and roadblocks for energy transformation," Energy Policy, Elsevier, vol. 161(C).
    3. Ehsan Rasoulinezhad & Farhad Taghizadeh-Hesary & Jinsok Sung & Nisit Panthamit, 2020. "Geopolitical Risk and Energy Transition in Russia: Evidence from ARDL Bounds Testing Method," Sustainability, MDPI, vol. 12(7), pages 1-17, March.
    4. Mohsen Salimi & Majid Amidpour, 2022. "The Impact of Energy Transition on the Geopolitical Importance of Oil-Exporting Countries," World, MDPI, vol. 3(3), pages 1-12, August.
    5. Romanova, Tatiana, 2023. "A choice between neoliberal engagement and strategic autonomy? The impossibility of EU's green cooperation with Russia between 2019 and 2021," Energy Policy, Elsevier, vol. 172(C).
    6. Gianfreda, Angelica & Scandolo, Giacomo, 2023. "A worldwide analysis of the energy regulatory tasks and activities through the lenses of entropy and unsupervised statistical learning," Energy, Elsevier, vol. 271(C).
    7. Gavin Bridge & Ludger Gailing, 2020. "New energy spaces: Towards a geographical political economy of energy transition," Environment and Planning A, , vol. 52(6), pages 1037-1050, September.
    8. Halil Burak Sakal, 2021. "Turkey’s energy trade relations with Europe: The role of institutions and energy market," Energy & Environment, , vol. 32(7), pages 1243-1274, November.
    9. Tao, Hu & Zhuang, Shan & Xue, Rui & Cao, Wei & Tian, Jinfang & Shan, Yuli, 2022. "Environmental Finance: An Interdisciplinary Review," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    10. Guo, Yanlong & Xu, Yishuo & Wang, Huajun & Shen, Jian & Zhao, Sumin, 2023. "Experimental investigation of water-rock reaction for the reinjection of sandstone geothermal reservoirs: A case from Neogene Guantao Formation in Tianjin," Renewable Energy, Elsevier, vol. 210(C), pages 203-214.
    11. Michael Carnegie LaBelle, 2023. "Energy as a weapon of war: Lessons from 50 years of energy interdependence," Global Policy, London School of Economics and Political Science, vol. 14(3), pages 531-547, June.
    12. Yugang He & Panpan Huang, 2022. "Exploring the Forms of the Economic Effects of Renewable Energy Consumption: Evidence from China," Sustainability, MDPI, vol. 14(13), pages 1-16, July.
    13. Yang, Tianle & Dong, Qingyuan & Du, Min & Du, Qunyang, 2023. "Geopolitical risks, oil price shocks and inflation: Evidence from a TVP–SV–VAR approach," Energy Economics, Elsevier, vol. 127(PB).
    14. Khan, Khalid & Su, Chi Wei & Khurshid, Adnan & Qin, Meng, 2023. "Does energy security improve renewable energy? A geopolitical perspective," Energy, Elsevier, vol. 282(C).
    15. Su, Chi-Wei & Khan, Khalid & Umar, Muhammad & Zhang, Weike, 2021. "Does renewable energy redefine geopolitical risks?," Energy Policy, Elsevier, vol. 158(C).
    16. Rempel, Arthur & Gupta, Joyeeta, 2021. "Fossil fuels, stranded assets and COVID-19: Imagining an inclusive & transformative recovery," World Development, Elsevier, vol. 146(C).
    17. Krahé, Max & Heilmann, Felix, 2023. "Fossil fuel to the fire: Energy and inflation in Europe," Papers 279870, Dezernat Zukunft - Institute for Macrofinance, Berlin.
    18. Javier Parra-Domínguez & Esteban Sánchez & Ángel Ordóñez, 2023. "The Prosumer: A Systematic Review of the New Paradigm in Energy and Sustainable Development," Sustainability, MDPI, vol. 15(13), pages 1-44, July.
    19. Koolen, Derck & Huisman, Ronald & Ketter, Wolfgang, 2022. "Decision strategies in sequential power markets with renewable energy," Energy Policy, Elsevier, vol. 167(C).
    20. Qureshi, Fazil & Yusuf, Mohammad & Kamyab, Hesam & Vo, Dai-Viet N. & Chelliapan, Shreeshivadasan & Joo, Sang-Woo & Vasseghian, Yasser, 2022. "Latest eco-friendly avenues on hydrogen production towards a circular bioeconomy: Currents challenges, innovative insights, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    21. Distefano, Tiziano & D’Alessandro, Simone, 2023. "Introduction of the carbon tax in Italy: Is there room for a quadruple-dividend effect?," Energy Economics, Elsevier, vol. 120(C).
    22. Maarten Wolsink, 2020. "Framing in Renewable Energy Policies: A Glossary," Energies, MDPI, vol. 13(11), pages 1-31, June.
    23. Khan, Khalid & Khurshid, Adnan & Cifuentes-Faura, Javier, 2023. "Energy security analysis in a geopolitically volatile world: A causal study," Resources Policy, Elsevier, vol. 83(C).
    24. Srivastava, Nidhi, 2023. "Trade in critical minerals: Revisiting the legal regime in times of energy transition," Resources Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vakulchuk, Roman & Overland, Indra & Scholten, Daniel, 2020. "Renewable energy and geopolitics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    2. Overland, Indra & Juraev, Javlon & Vakulchuk, Roman, 2022. "Are renewable energy sources more evenly distributed than fossil fuels?," Renewable Energy, Elsevier, vol. 200(C), pages 379-386.
    3. Caragliu, Andrea & Graziano, Marcello, 2022. "The spatial dimension of energy transition policies, practices and technologies," Energy Policy, Elsevier, vol. 168(C).
    4. Gavin Bridge & Ludger Gailing, 2020. "New energy spaces: Towards a geographical political economy of energy transition," Environment and Planning A, , vol. 52(6), pages 1037-1050, September.
    5. Avri Eitan, 2021. "Promoting Renewable Energy to Cope with Climate Change—Policy Discourse in Israel," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
    6. Kuchler, Magdalena & Höök, Mikael, 2020. "Fractured visions: Anticipating (un)conventional natural gas in Poland," Resources Policy, Elsevier, vol. 68(C).
    7. Adrian Neacșa & Mirela Panait & Jianu Daniel Mureșan & Marian Catalin Voica & Otilia Manta, 2022. "The Energy Transition between Desideratum and Challenge: Are Cogeneration and Trigeneration the Best Solution?," IJERPH, MDPI, vol. 19(5), pages 1-22, March.
    8. Philippe Le Billon & Berit Kristoffersen, 2020. "Just cuts for fossil fuels? Supply-side carbon constraints and energy transition," Environment and Planning A, , vol. 52(6), pages 1072-1092, September.
    9. Zhang, Pengpeng & Zhang, Lixiao & Tian, Xin & Hao, Yan & Wang, Changbo, 2018. "Urban energy transition in China: Insights from trends, socioeconomic drivers, and environmental impacts of Beijing," Energy Policy, Elsevier, vol. 117(C), pages 173-183.
    10. Sannamari Pilpola & Vahid Arabzadeh & Jani Mikkola & Peter D. Lund, 2019. "Analyzing National and Local Pathways to Carbon-Neutrality from Technology, Emissions, and Resilience Perspectives—Case of Finland," Energies, MDPI, vol. 12(5), pages 1-22, March.
    11. Morgan Bazilian & Michael Bradshaw & Johannes Gabriel & Andreas Goldthau & Kirsten Westphal, 2020. "Four scenarios of the energy transition: Drivers, consequences, and implications for geopolitics," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(2), March.
    12. Nicolae PINTILIE, 2021. "Is there a Connection between Renewable Energy and Geopolitics? A Review," Management and Economics Review, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 6(1), pages 112-122, June.
    13. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    14. Wina Crijns-Graus & Patricia Wild & Mehdi Parvizi Amineh & Jing Hu & Hui Yue, 2022. "International Comparison of Research and Investments in New Renewable Electricity Technologies: A Focus on the European Union and China," Energies, MDPI, vol. 15(17), pages 1-19, September.
    15. Griet Juwet & Michael Ryckewaert, 2018. "Energy Transition in the Nebular City: Connecting Transition Thinking, Metabolism Studies, and Urban Design," Sustainability, MDPI, vol. 10(4), pages 1-20, March.
    16. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    17. Yan Nie & Guoxing Zhang, 2020. "Indicator system to evaluate the effectiveness and efficiency of China clean power systems," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(7), pages 1381-1401, October.
    18. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    19. Norbert Edomah & Chris Foulds & Aled Jones, 2016. "Energy Transitions in Nigeria: The Evolution of Energy Infrastructure Provision (1800–2015)," Energies, MDPI, vol. 9(7), pages 1-18, June.
    20. Foran, Tira & Fleming, David & Spandonide, Bruno & Williams, Rachel & Race, Digby, 2016. "Understanding energy-related regimes: A participatory approach from central Australia," Energy Policy, Elsevier, vol. 91(C), pages 315-324.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:138:y:2020:i:c:s0301421519306469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.