IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v137y2020ics0301421519306925.html
   My bibliography  Save this article

Is the photovoltaic poverty alleviation project the best way for the poor to escape poverty? ——A DEA and GRA analysis of different projects in rural China

Author

Listed:
  • Wang, Zihan
  • Li, Jiaxin
  • Liu, Jing
  • Shuai, Chuanmin

Abstract

The solar photovoltaic poverty alleviation project (PPAP) is an important innovation in China's targeted poverty alleviation (TPA) mission. Through investment in the renewable energy industry and an emphasis on poverty alleviation in rural areas, China's TPA has achieved great success. Although China has invested large amounts of money in PPAP, its actual contribution to rural poverty alleviation has not been verified. This paper analyzes the contribution of PPAP's efficiency in TPA via data envelopment analysis (DEA) and grey relation analysis (GRA). The results show that: 1) the overall efficiency of TPA is high; 2) the overall efficiency of TPA has large geographical differences; 3) the inputs of TPA have a great impact on the efficiency of poverty alleviation; and 4) China's investment in PPAP is indeed effective, but its impact on poverty alleviation is overestimated. Therefore, we propose four policy recommendations: 1) the scale and proportion of financial investment in TPA should be optimized; 2) local governments should allocate poverty alleviation funds according to local situations; 3) the Chinese central government should strengthen macro control and reduce support for PPAP; and 4) local governments should balance the allocation of funds for PPAP and other poverty alleviation projects.

Suggested Citation

  • Wang, Zihan & Li, Jiaxin & Liu, Jing & Shuai, Chuanmin, 2020. "Is the photovoltaic poverty alleviation project the best way for the poor to escape poverty? ——A DEA and GRA analysis of different projects in rural China," Energy Policy, Elsevier, vol. 137(C).
  • Handle: RePEc:eee:enepol:v:137:y:2020:i:c:s0301421519306925
    DOI: 10.1016/j.enpol.2019.111105
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519306925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.111105?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ghosh, Santosh & Yadav, Vinod Kumar & Mukherjee, Vivekananda & Yadav, Pankaj, 2017. "Evaluation of relative impact of aerosols on photovoltaic cells through combined Shannon's entropy and Data Envelopment Analysis (DEA)," Renewable Energy, Elsevier, vol. 105(C), pages 344-353.
    2. Wu, Yunna & Ke, Yiming & Zhang, Ting & Liu, Fangtong & Wang, Jing, 2018. "Performance efficiency assessment of photovoltaic poverty alleviation projects in China: A three-phase data envelopment analysis model," Energy, Elsevier, vol. 159(C), pages 599-610.
    3. Piot-Lepetit, Isabelle & Nzongang, Joseph, 2014. "Financial sustainability and poverty outreach within a network of village banks in Cameroon: A multi-DEA approach," European Journal of Operational Research, Elsevier, vol. 234(1), pages 319-330.
    4. Jinpeng Liu & Yun Long & Xiaohua Song, 2017. "A Study on the Conduction Mechanism and Evaluation of the Comprehensive Efficiency of Photovoltaic Power Generation in China," Energies, MDPI, vol. 10(5), pages 1-22, May.
    5. Wu, Jie & Lv, Lin & Sun, Jiasen & Ji, Xiang, 2015. "A comprehensive analysis of China's regional energy saving and emission reduction efficiency: From production and treatment perspectives," Energy Policy, Elsevier, vol. 84(C), pages 166-176.
    6. Song, Malin & An, Qingxian & Zhang, Wei & Wang, Zeya & Wu, Jie, 2012. "Environmental efficiency evaluation based on data envelopment analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4465-4469.
    7. Per Andersen & Niels Christian Petersen, 1993. "A Procedure for Ranking Efficient Units in Data Envelopment Analysis," Management Science, INFORMS, vol. 39(10), pages 1261-1264, October.
    8. Isabelle Piot-Lepetit & Joseph Nzongang, 2014. "Financial sustainability and poverty outreach within a network of village banks in Cameroon: A multi DEA approach," Post-Print hal-02639487, HAL.
    9. Yanbin Li & Shuangshuang Shao & Feng Zhang, 2018. "An Analysis of the Multi-Criteria Decision-Making Problem for Distributed Energy Systems," Energies, MDPI, vol. 11(9), pages 1-12, September.
    10. Christopher J. Bennett & Shabana Mitra, 2013. "Multidimensional Poverty: Measurement, Estimation, and Inference," Econometric Reviews, Taylor & Francis Journals, vol. 32(1), pages 57-83, January.
    11. Tian, Guangdong & Zhang, Honghao & Feng, Yixiong & Wang, Danqi & Peng, Yong & Jia, Hongfei, 2018. "Green decoration materials selection under interior environment characteristics: A grey-correlation based hybrid MCDM method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 682-692.
    12. Moon, Hana & Min, Daiki, 2017. "Assessing energy efficiency and the related policy implications for energy-intensive firms in Korea: DEA approach," Energy, Elsevier, vol. 133(C), pages 23-34.
    13. Mahinda Wijesiri & Almudena Martínez-Campillo & Peter Wanke, 2019. "Is there a trade-off between social and financial performance of public commercial banks in India? A multi-activity DEA model with shared inputs and undesirable outputs," Review of Managerial Science, Springer, vol. 13(2), pages 417-442, April.
    14. Li, Hongkuan & He, Haiyan & Shan, Jiefei & Cai, Jingjing, 2019. "Innovation efficiency of semiconductor industry in China: A new framework based on generalized three-stage DEA analysis," Socio-Economic Planning Sciences, Elsevier, vol. 66(C), pages 136-148.
    15. Biswas, Wahidul K. & Diesendorf, Mark & Bryce, Paul, 2004. "Can photovoltaic technologies help attain sustainable rural development in Bangladesh?," Energy Policy, Elsevier, vol. 32(10), pages 1199-1207, July.
    16. Diouf, Boucar, 2016. "Tontine: Self-help financing for solar home systems," Renewable Energy, Elsevier, vol. 90(C), pages 166-174.
    17. Li, Yan & Zhang, Qi & Wang, Ge & McLellan, Benjamin & Liu, Xue Fei & Wang, Le, 2018. "A review of photovoltaic poverty alleviation projects in China: Current status, challenge and policy recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 214-223.
    18. Zhang, Lei & Qin, Quande & Wei, Yi-Ming, 2019. "China's distributed energy policies: Evolution, instruments and recommendation," Energy Policy, Elsevier, vol. 125(C), pages 55-64.
    19. Nadimi, Reza & Tokimatsu, Koji, 2019. "Potential energy saving via overall efficiency relying on quality of life," Applied Energy, Elsevier, vol. 233, pages 283-299.
    20. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    21. Xue, Jinlin, 2017. "Photovoltaic agriculture - New opportunity for photovoltaic applications in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1-9.
    22. Azadeh, A. & Ghaderi, S.F. & Maghsoudi, A., 2008. "Location optimization of solar plants by an integrated hierarchical DEA PCA approach," Energy Policy, Elsevier, vol. 36(10), pages 3993-4004, October.
    23. Zhang, Xing-Ping & Cheng, Xiao-Mei & Yuan, Jia-Hai & Gao, Xiao-Jun, 2011. "Total-factor energy efficiency in developing countries," Energy Policy, Elsevier, vol. 39(2), pages 644-650, February.
    24. Yang, Tao & Liu, Jingling & Chen, Qiuying, 2013. "Assessment of plain river ecosystem function based on improved gray system model and analytic hierarchy process for the Fuyang River, Haihe River Basin, China," Ecological Modelling, Elsevier, vol. 268(C), pages 37-47.
    25. Kim, Kyung-Taek & Lee, Deok Joo & Park, Sung-Joon & Zhang, Yanshuai & Sultanov, Azamat, 2015. "Measuring the efficiency of the investment for renewable energy in Korea using data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 694-702.
    26. Hu, Jin-Li & Kao, Chih-Hung, 2007. "Efficient energy-saving targets for APEC economies," Energy Policy, Elsevier, vol. 35(1), pages 373-382, January.
    27. Mostafaeipour, Ali & Qolipour, Mojtaba & Mohammadi, Kasra, 2016. "Evaluation of installing photovoltaic plants using a hybrid approach for Khuzestan province, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 60-74.
    28. Qi, Tianyu & Zhang, Xiliang & Karplus, Valerie J., 2014. "The energy and CO2 emissions impact of renewable energy development in China," Energy Policy, Elsevier, vol. 68(C), pages 60-69.
    29. Ouyang, Xiaoling & Wei, Xiaoyun & Sun, Chuanwang & Du, Gang, 2018. "Impact of factor price distortions on energy efficiency: Evidence from provincial-level panel data in China," Energy Policy, Elsevier, vol. 118(C), pages 573-583.
    30. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    31. Sueyoshi, Toshiyuki & Wang, Derek, 2017. "Measuring scale efficiency and returns to scale on large commercial rooftop photovoltaic systems in California," Energy Economics, Elsevier, vol. 65(C), pages 389-398.
    32. Chien, Taichen & Hu, Jin-Li, 2007. "Renewable energy and macroeconomic efficiency of OECD and non-OECD economies," Energy Policy, Elsevier, vol. 35(7), pages 3606-3615, July.
    33. Tao Yi & Ling Tong & Mohan Qiu & Jinpeng Liu, 2019. "Analysis of Driving Factors of Photovoltaic Power Generation Efficiency: A Case Study in China," Energies, MDPI, vol. 12(3), pages 1-15, January.
    34. Habibov, Nazim N. & Fan, Lida, 2010. "Comparing and contrasting poverty reduction performance of social welfare programs across jurisdictions in Canada using Data Envelopment Analysis (DEA): An exploratory study of the era of devolution," Evaluation and Program Planning, Elsevier, vol. 33(4), pages 457-467, November.
    35. Zhang, Huiming & Xu, Zhidong & Sun, Chuanwang & Elahi, Ehsan, 2018. "Targeted poverty alleviation using photovoltaic power: Review of Chinese policies," Energy Policy, Elsevier, vol. 120(C), pages 550-558.
    36. Hashemi, Seyed Hamid & Karimi, Amir & Tavana, Madjid, 2015. "An integrated green supplier selection approach with analytic network process and improved Grey relational analysis," International Journal of Production Economics, Elsevier, vol. 159(C), pages 178-191.
    37. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis," Energy Economics, Elsevier, vol. 42(C), pages 271-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Yongli & Gao, Mingchen & Wang, Jingyan & Wang, Shuo & Liu, Yang & Zhu, Jinrong & Tan, Zhongfu, 2021. "Measurement and key influencing factors of the economic benefits for China’s photovoltaic power generation: A LCOE-based hybrid model," Renewable Energy, Elsevier, vol. 169(C), pages 935-952.
    2. Ding, Liping & Zhang, Zumeng & Dai, Qiyao & Zhu, Yuxuan & Shi, Yin, 2023. "Alternative operational modes for Chinese PV poverty alleviation power stations: Economic impacts on stakeholders," Utilities Policy, Elsevier, vol. 82(C).
    3. Liang Meng & Ahmed Alengebawy & Ping Ai & Keda Jin & Mengdi Chen & Yulong Pan, 2020. "Techno-Economic Assessment of Three Modes of Large-Scale Crop Residue Utilization Projects in China," Energies, MDPI, vol. 13(14), pages 1-19, July.
    4. Jing Ma & Liangwei Yang & Zhineng Hu, 2022. "A Counterfactual Assessment of Poverty Alleviation Sustainability on Multiple Non-equivalent Household Groups," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(5), pages 1975-2000, October.
    5. Liu, Jing & Huang, Fubin & Wang, Zihan & Shuai, Chuanmin, 2021. "What is the anti-poverty effect of solar PV poverty alleviation projects? Evidence from rural China," Energy, Elsevier, vol. 218(C).
    6. Chen, Xin & Zhou, Wenjia, 2023. "Performance evaluation of aquavoltaics in China: Retrospect and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    7. Songrui Li & Yitang Hu, 2022. "A Multi-Criteria Framework to Evaluate the Sustainability of Renewable Energy: A 2-Tuple Linguistic Grey Relation Model from the Perspective of the Prospect Theory," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    8. Zhang, Tiantian & Nakagawa, Kei & Matsumoto, Ken'ichi, 2023. "Evaluating solar photovoltaic power efficiency based on economic dimensions for 26 countries using a three-stage data envelopment analysis," Applied Energy, Elsevier, vol. 335(C).
    9. Peng Cao & Xiao Ouyang & Jun Xu, 2022. "How Do Ecosystem Services Affect Poverty Reduction Efficiency? A Panel Data Analysis of State Poverty Counties in China," IJERPH, MDPI, vol. 19(3), pages 1-17, February.
    10. Helu Xiao & Na Wang & Shanping Wang, 2023. "Dynamic sustainability assessment of poverty alleviation in China: evidence from both novel non-convex global two-stage DEA and Malmquist productivity index," Operational Research, Springer, vol. 23(2), pages 1-40, June.
    11. Rui Meng & Lirong Zhang & Hongkuan Zang & Shichao Jin, 2021. "Evaluation of Environmental and Economic Integrated Benefits of Photovoltaic Poverty Alleviation Technology in the Sanjiangyuan Region of Qinghai Province," Sustainability, MDPI, vol. 13(23), pages 1-19, November.
    12. Patyal, Vishal Singh & Kumar, Ravi & Lamba, Kuldeep & Maheshwari, Sunil, 2023. "Performance evaluation of Indian electricity distribution companies: An integrated DEA-IRP-TOPSIS approach," Energy Economics, Elsevier, vol. 124(C).
    13. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    14. Toshiyuki Sueyoshi & Ruchuan Zhang & Aijun Li, 2023. "Measuring and Analyzing Operational Efficiency and Returns to Scale in a Time Horizon: Assessment of China’s Electricity Generation & Transmission at Provincial Levels," Energies, MDPI, vol. 16(2), pages 1-23, January.
    15. Yanhong Tang & Yingwen Chen & Rui Yang & Xin Miao, 2020. "The Unified Efficiency Evaluation of China’s Industrial Waste Gas Considering Pollution Prevention and End-Of-Pipe Treatment," IJERPH, MDPI, vol. 17(16), pages 1-27, August.
    16. Li, Yunwei & Chen, Kui & Ding, Ruixin & Zhang, Jing & Hao, Yu, 2023. "How do photovoltaic poverty alleviation projects relieve household energy poverty? Evidence from China," Energy Economics, Elsevier, vol. 118(C).
    17. Wang, Chaofan & Zhao, Yujia & Strezov, Vladimir & Shuai, Chuanmin & Cheng, Xin & Shuai, Jing, 2023. "Spatial correlation analysis of comprehensive efficiency of the photovoltaic poverty alleviation policy - Evidence from 110 counties in China," Energy, Elsevier, vol. 282(C).
    18. He, Yongxiu & Che, Yiran & Lyu, Yuan & Lu, Ye & Zhang, Yan, 2022. "Social benefit evaluation of China's photovoltaic poverty alleviation project," Renewable Energy, Elsevier, vol. 187(C), pages 1065-1081.
    19. Chen, Junlin & Zhang, Ying & Wang, Wenqing & Yang, Can & Li, Jiayue & Wu, Yulun, 2022. "The efficiency of consumption poverty alleviation and improvement measures in Guizhou, China," Energy, Elsevier, vol. 248(C).
    20. Liao, Chuan & Fei, Ding & Huang, Qingxu & Jiang, Lu & Shi, Peijun, 2021. "Targeted poverty alleviation through photovoltaic-based intervention: Rhetoric and reality in Qinghai, China," World Development, Elsevier, vol. 137(C).
    21. Chu Qin & Wei Zhang, 2022. "Green, poverty reduction and spatial spillover: an analysis from 21 provinces of China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(12), pages 13610-13629, December.
    22. Wang, Zihan & Huang, Fubin & Liu, Jing & Shuai, Jing & Shuai, Chuanmin, 2020. "Does solar PV bring a sustainable future to the poor? -- an empirical study of anti-poverty policy effects on environmental sustainability in rural China," Energy Policy, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    2. Li, Jiaxin & Wang, Zihan & Cheng, Xin & Shuai, Jing & Shuai, Chuanmin & Liu, Jing, 2020. "Has solar PV achieved the national poverty alleviation goals? Empirical evidence from the performances of 52 villages in rural China," Energy, Elsevier, vol. 201(C).
    3. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    4. Zhang, Zumeng & Ding, Liping & Wang, Chaofan & Dai, Qiyao & Shi, Yin & Zhao, Yujia & Zhu, Yuxuan, 2022. "Do operation and maintenance contracts help photovoltaic poverty alleviation power stations perform better?," Energy, Elsevier, vol. 259(C).
    5. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    6. Wu, Yunna & Ke, Yiming & Zhang, Ting & Liu, Fangtong & Wang, Jing, 2018. "Performance efficiency assessment of photovoltaic poverty alleviation projects in China: A three-phase data envelopment analysis model," Energy, Elsevier, vol. 159(C), pages 599-610.
    7. Li, Jiaxin & Peng, Jiachao & Shuai, Chuanmin & Wang, Zihan & Huang, Fubin & Khayyam, Muhammad, 2022. "Does the solar PV program enhance the social empowerment of China's rural poor?," Energy, Elsevier, vol. 253(C).
    8. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    9. Chen, Junlin & Zhang, Ying & Wang, Wenqing & Yang, Can & Li, Jiayue & Wu, Yulun, 2022. "The efficiency of consumption poverty alleviation and improvement measures in Guizhou, China," Energy, Elsevier, vol. 248(C).
    10. Han, Mengyao & Xiong, Jiao & Wang, Siyuan & Yang, Yu, 2020. "Chinese photovoltaic poverty alleviation: Geographic distribution, economic benefits and emission mitigation," Energy Policy, Elsevier, vol. 144(C).
    11. Chen, Xin & Zhou, Wenjia, 2023. "Performance evaluation of aquavoltaics in China: Retrospect and prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    12. Liu, Jing & Huang, Fubin & Wang, Zihan & Shuai, Chuanmin, 2021. "What is the anti-poverty effect of solar PV poverty alleviation projects? Evidence from rural China," Energy, Elsevier, vol. 218(C).
    13. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    14. Ghosh, Santosh & Yadav, Vinod Kumar & Mukherjee, Vivekananda & Gupta, Shubham, 2021. "Three decades of Indian power-sector reform:A critical assessment," Utilities Policy, Elsevier, vol. 68(C).
    15. Meng, Fanyi & Su, Bin & Thomson, Elspeth & Zhou, Dequn & Zhou, P., 2016. "Measuring China’s regional energy and carbon emission efficiency with DEA models: A survey," Applied Energy, Elsevier, vol. 183(C), pages 1-21.
    16. Demiral, Elif E. & Sağlam, Ümit, 2021. "Eco-efficiency and Eco-productivity assessments of the states in the United States: A two-stage Non-parametric analysis," Applied Energy, Elsevier, vol. 303(C).
    17. Bhat, Javed Ahmad & Haider, Salman & Kamaiah, Bandi, 2018. "Interstate energy efficiency of Indian paper industry: A slack-based non-parametric approach," Energy, Elsevier, vol. 161(C), pages 284-298.
    18. Ramin Gharizadeh Beiragh & Reza Alizadeh & Saeid Shafiei Kaleibari & Fausto Cavallaro & Sarfaraz Hashemkhani Zolfani & Romualdas Bausys & Abbas Mardani, 2020. "An integrated Multi-Criteria Decision Making Model for Sustainability Performance Assessment for Insurance Companies," Sustainability, MDPI, vol. 12(3), pages 1, January.
    19. Nuri Ozgur DOGAN & Can Tansel TUGCU, 2015. "Energy Efficiency in Electricity Production: A Data Envelopment Analysis (DEA) Approach for the G-20 Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 5(1), pages 246-252.
    20. Huang, Hongyun & Wang, Fengrong & Song, Malin & Balezentis, Tomas & Streimikiene, Dalia, 2021. "Green innovations for sustainable development of China: Analysis based on the nested spatial panel models," Technology in Society, Elsevier, vol. 65(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:137:y:2020:i:c:s0301421519306925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.