IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i14p3729-d386948.html
   My bibliography  Save this article

Techno-Economic Assessment of Three Modes of Large-Scale Crop Residue Utilization Projects in China

Author

Listed:
  • Liang Meng

    (College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
    Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041, China
    Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China)

  • Ahmed Alengebawy

    (College of Engineering, Huazhong Agricultural University, Wuhan 430070, China)

  • Ping Ai

    (College of Engineering, Huazhong Agricultural University, Wuhan 430070, China
    Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu 610041, China
    Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China)

  • Keda Jin

    (College of Engineering, Huazhong Agricultural University, Wuhan 430070, China)

  • Mengdi Chen

    (College of Engineering, Huazhong Agricultural University, Wuhan 430070, China)

  • Yulong Pan

    (Wuhan Electronic Information Institute, Wuhan 430019, China)

Abstract

In China, the non-exploitation of bioenergy poses major problems and challenges. To solve bioenergy problems, considerable efforts have been made to expedite the construction of large-scale crop residue utilization projects. In this study, three principal supported modes of large-scale crop residue utilization projects were taken as empirical cases in Hubei province bioenergy planning. In terms of the overall benefit and sustainable development, a third-grade evaluation index system was established. The analysis was carried out using the analytical hierarchy process, principal component projection, and grey relational analysis. The conclusion indicates that according to the evaluation values, the sequence from best to worst was crop residue biogas project, crop residue briquette fuel project, and crop residue gasification project. Nevertheless, there was no remarkable difference in the overall evaluation values. The biogas project had certain advantages in terms of the production cost, soil improvement, and expenditure saving, whereas the gasification project was comparatively insufficient in environmental efficiency, product benefit, by-product disposal, and technical rationality. According to actual evaluation results, the unilateral determination approach of the single weight index can be seen as being overcome through the unified adaptation of the evaluation methods. The research results can serve as a reference for making investment decisions to build large-scale crop residue utilization projects.

Suggested Citation

  • Liang Meng & Ahmed Alengebawy & Ping Ai & Keda Jin & Mengdi Chen & Yulong Pan, 2020. "Techno-Economic Assessment of Three Modes of Large-Scale Crop Residue Utilization Projects in China," Energies, MDPI, vol. 13(14), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3729-:d:386948
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/14/3729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/14/3729/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Veronica Arthurson, 2009. "Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback," Energies, MDPI, vol. 2(2), pages 1-17, April.
    2. Yang, Jun & Wang, Xiaobing & Ma, Hengyun & Bai, Junfei & Jiang, Ye & Yu, Hai, 2014. "Potential usage, vertical value chain and challenge of biomass resource: Evidence from China’s crop residues," Applied Energy, Elsevier, vol. 114(C), pages 717-723.
    3. Andrés Niño & Nelson Arzola & Oscar Araque, 2020. "Experimental Study on the Mechanical Properties of Biomass Briquettes from a Mixture of Rice Husk and Pine Sawdust," Energies, MDPI, vol. 13(5), pages 1-19, February.
    4. Blair, M. Jean & Mabee, Warren E., 2020. "Evaluation of technology, economics and emissions impacts of community-scale bioenergy systems for a forest-based community in Ontario," Renewable Energy, Elsevier, vol. 151(C), pages 715-730.
    5. Vasconcelos, Marcelo Holanda & Mendes, Fernanda Machado & Ramos, Lucas & Dias, Marina Oliveira S. & Bonomi, Antonio & Jesus, Charles Dayan F. & Watanabe, Marcos Djun B. & Junqueira, Tassia Lopes & Mil, 2020. "Techno-economic assessment of bioenergy and biofuel production in integrated sugarcane biorefinery: Identification of technological bottlenecks and economic feasibility of dilute acid pretreatment," Energy, Elsevier, vol. 199(C).
    6. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    7. Changbo Wang & Lixiao Zhang & Shuying Yang & Mingyue Pang, 2012. "A Hybrid Life-Cycle Assessment of Nonrenewable Energy and Greenhouse-Gas Emissions of a Village-Level Biomass Gasification Project in China," Energies, MDPI, vol. 5(8), pages 1-16, July.
    8. Zhang, L.X. & Wang, C.B. & Bahaj, A.S., 2014. "Carbon emissions by rural energy in China," Renewable Energy, Elsevier, vol. 66(C), pages 641-649.
    9. Ronald W. Breault, 2010. "Gasification Processes Old and New: A Basic Review of the Major Technologies," Energies, MDPI, vol. 3(2), pages 1-25, February.
    10. Kang, Yating & Yang, Qing & Bartocci, Pietro & Wei, Hongjian & Liu, Sylvia Shuhan & Wu, Zhujuan & Zhou, Hewen & Yang, Haiping & Fantozzi, Francesco & Chen, Hanping, 2020. "Bioenergy in China: Evaluation of domestic biomass resources and the associated greenhouse gas mitigation potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    11. Danijel Topić & Marinko Barukčić & Dražen Mandžukić & Cecilia Mezei, 2020. "Optimization Model for Biogas Power Plant Feedstock Mixture Considering Feedstock and Transportation Costs Using a Differential Evolution Algorithm," Energies, MDPI, vol. 13(7), pages 1-22, April.
    12. Yang, Shiliang & Wang, Hua & Wei, Yonggang & Hu, Jianhang & Chew, Jia Wei, 2019. "Eulerian-Lagrangian simulation of air-steam biomass gasification in a three-dimensional bubbling fluidized gasifier," Energy, Elsevier, vol. 181(C), pages 1075-1093.
    13. Gosens, Jorrit & Lu, Yonglong & He, Guizhen & Bluemling, Bettina & Beckers, Theo A.M., 2013. "Sustainability effects of household-scale biogas in rural China," Energy Policy, Elsevier, vol. 54(C), pages 273-287.
    14. Naesens, Kobe & Gelders, Ludo & Pintelon, Liliane, 2009. "A swift response framework for measuring the strategic fit for a horizontal collaborative initiative," International Journal of Production Economics, Elsevier, vol. 121(2), pages 550-561, October.
    15. Samer, Mohamed & Abdelaziz, Salwa & Refai, Mohamed & Abdelsalam, Essam, 2020. "Techno-economic assessment of dry fermentation in household biogas units through co-digestion of manure and agricultural crop residues in Egypt," Renewable Energy, Elsevier, vol. 149(C), pages 226-234.
    16. Noonari, A.A. & Mahar, R.B. & Sahito, A.R. & Brohi, K.M., 2019. "Anaerobic co-digestion of canola straw and banana plant wastes with buffalo dung: Effect of Fe3O4 nanoparticles on methane yield," Renewable Energy, Elsevier, vol. 133(C), pages 1046-1054.
    17. Jiang, Dong & Zhuang, Dafang & Fu, Jinying & Huang, Yaohuan & Wen, Kege, 2012. "Bioenergy potential from crop residues in China: Availability and distribution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1377-1382.
    18. Wang, Shuai & Shen, Yansong, 2020. "CFD-DEM study of biomass gasification in a fluidized bed reactor: Effects of key operating parameters," Renewable Energy, Elsevier, vol. 159(C), pages 1146-1164.
    19. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    20. Joseph Daniel & Nandigana V. R. Vishal & Bensely Albert & Iniyan Selvarsan, 2010. "Evaluation of the Significant Renewable Energy Resources in India Using Analytical Hierarchy Process," Lecture Notes in Economics and Mathematical Systems, in: Matthias Ehrgott & Boris Naujoks & Theodor J. Stewart & Jyrki Wallenius (ed.), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pages 13-26, Springer.
    21. Moran, J.C. & Miguez, J.L. & Porteiro, J. & Patiño, D. & Granada, E. & Collazo, J., 2009. "Study of the feasibility of mixing Refuse Derived Fuels with wood pellets through the grey and Fuzzy theory," Renewable Energy, Elsevier, vol. 34(12), pages 2607-2612.
    22. Chen, Longjian & Xing, Li & Han, Lujia, 2009. "Renewable energy from agro-residues in China: Solid biofuels and biomass briquetting technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2689-2695, December.
    23. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    24. Liu, Wenling & Wang, Can & Mol, Arthur P.J., 2012. "Rural residential CO2 emissions in China: Where is the major mitigation potential?," Energy Policy, Elsevier, vol. 51(C), pages 223-232.
    25. Chen, S.Q. & Li, N.P. & Guan, J. & Ni, J. & Zhou, H. & Sun, F.M. & Xie, Y.Q., 2009. "Contrastive study between the biomass energy utilization structure and the ecotype energy utilization structure in rural residences — A case in Hunan province, China," Renewable Energy, Elsevier, vol. 34(7), pages 1782-1788.
    26. Chen, Yu & Yang, Gaihe & Sweeney, Sandra & Feng, Yongzhong, 2010. "Household biogas use in rural China: A study of opportunities and constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 545-549, January.
    27. Fang, Yan Ru & Wu, Yi & Xie, Guang Hui, 2019. "Crop residue utilizations and potential for bioethanol production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    28. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    29. Wang, Zihan & Li, Jiaxin & Liu, Jing & Shuai, Chuanmin, 2020. "Is the photovoltaic poverty alleviation project the best way for the poor to escape poverty? ——A DEA and GRA analysis of different projects in rural China," Energy Policy, Elsevier, vol. 137(C).
    30. Shah, Fayyaz Ali & Mahmood, Qaisar & Rashid, Naim & Pervez, Arshid & Raja, Iftikhar Ahmad & Shah, Mohammad Maroof, 2015. "Co-digestion, pretreatment and digester design for enhanced methanogenesis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 627-642.
    31. Li, Canbing & He, Lina & Cao, Yijia & Xiao, Guoxuan & Zhang, Wei & Liu, Xiaohai & Yu, Zhicheng & Tan, Yi & Zhou, Jinju, 2014. "Carbon emission reduction potential of rural energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 254-262.
    32. Wang, Xiaoyu & Yang, Lu & Steinberger, Yosef & Liu, Zuxin & Liao, Shuhua & Xie, Guanghui, 2013. "Field crop residue estimate and availability for biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 864-875.
    33. Zeng, Xianyang & Ma, Yitai & Ma, Lirong, 2007. "Utilization of straw in biomass energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 976-987, June.
    34. Ming-Kuen Wang & Kevin P. Hwang, 2014. "Using FAHP Methods Evaluation and Screening of Intellectual Property Rights Managers in Taiwan," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 31(06), pages 1-26.
    35. Guan-Bang Chen & Jia-Wen Li & Hsien-Tsung Lin & Fang-Hsien Wu & Yei-Chin Chao, 2018. "A Study of the Production and Combustion Characteristics of Pyrolytic Oil from Sewage Sludge Using the Taguchi Method," Energies, MDPI, vol. 11(9), pages 1-17, August.
    36. Situmorang, Yohanes Andre & Zhao, Zhongkai & Yoshida, Akihiro & Abudula, Abuliti & Guan, Guoqing, 2020. "Small-scale biomass gasification systems for power generation (<200 kW class): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    37. Maria Angeles Garrido & Juan A. Conesa & Maria Dolores Garcia, 2017. "Characterization and Production of Fuel Briquettes Made from Biomass and Plastic Wastes," Energies, MDPI, vol. 10(7), pages 1-12, June.
    38. Cherni, Judith A. & Dyner, Isaac & Henao, Felipe & Jaramillo, Patricia & Smith, Ricardo & Font, Raul Olalde, 2007. "Energy supply for sustainable rural livelihoods. A multi-criteria decision-support system," Energy Policy, Elsevier, vol. 35(3), pages 1493-1504, March.
    39. Schipfer, Fabian & Kranzl, Lukas, 2019. "Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs)," Applied Energy, Elsevier, vol. 239(C), pages 715-724.
    40. Onursal Yakaboylu & John Harinck & K. G. Smit & Wiebren De Jong, 2015. "Supercritical Water Gasification of Biomass: A Literature and Technology Overview," Energies, MDPI, vol. 8(2), pages 1-36, January.
    41. Daniel Meyer-Kohlstock & Thomas Haupt & Erik Heldt & Nils Heldt & Eckhard Kraft, 2016. "Biochar as Additive in Biogas-Production from Bio-Waste," Energies, MDPI, vol. 9(4), pages 1-10, March.
    42. Weronika Kruszelnicka, 2020. "A New Model for Environmental Assessment of the Comminution Process in the Chain of Biomass Energy Processing †," Energies, MDPI, vol. 13(2), pages 1-21, January.
    43. Han, Jun & Kim, Heejoon, 2008. "The reduction and control technology of tar during biomass gasification/pyrolysis: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 397-416, February.
    44. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    45. Jat, H.S. & Jat, R.D. & Nanwal, R.K. & Lohan, Shiv Kumar & Yadav, A.K. & Poonia, Tanuja & Sharma, P.C. & Jat, M.L., 2020. "Energy use efficiency of crop residue management for sustainable energy and agriculture conservation in NW India," Renewable Energy, Elsevier, vol. 155(C), pages 1372-1382.
    46. Susastriawan, A.A.P. & Saptoadi, Harwin & Purnomo,, 2017. "Small-scale downdraft gasifiers for biomass gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 989-1003.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiang Wang & Thomas Dogot & Yueling Yang & Jian Jiao & Boyang Shi & Changbin Yin, 2020. "From “Coal to Gas” to “Coal to Biomass”: The Strategic Choice of Social Capital in China," Energies, MDPI, vol. 13(16), pages 1-22, August.
    2. Huang, Jintao & Lyu, Sha & Han, He & Wang, Yanjiang & Sun, Haoyang & Su, Jingtao & Liu, Yidong & Min, Yonggang & Sun, Dazhi, 2022. "Enhanced looping biomass/vapour gasification utilizing waste heat from molten copper slags," Energy, Elsevier, vol. 252(C).
    3. Oscar Araque & Nelson Arzola & Laura Gallego, 2022. "Mechanical Behavior of Briquettes Made from a Mixture of Sawdust and Rice Husks for Commercialization," Resources, MDPI, vol. 11(3), pages 1-18, March.
    4. Elias Martinez-Hernandez & Myriam A. Amezcua-Allieri & Jorge Aburto, 2021. "Assessing the Cost of Biomass and Bioenergy Production in Agroindustrial Processes," Energies, MDPI, vol. 14(14), pages 1-17, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Min He & Pei Liu & Linwei Ma & Chinhao Chong & Xu Li & Shizhong Song & Zheng Li & Weidou Ni, 2018. "A Systems Analysis of the Development Status and Trends of Rural Household Energy in China," Energies, MDPI, vol. 11(7), pages 1-23, July.
    2. Ru Fang, Yan & Zhang, Silu & Zhou, Ziqiao & Shi, Wenjun & Hui Xie, Guang, 2022. "Sustainable development in China: Valuation of bioenergy potential and CO2 reduction from crop straw," Applied Energy, Elsevier, vol. 322(C).
    3. Zhang, Bingquan & Xu, Jialu & Lin, Zhixian & Lin, Tao & Faaij, André P.C., 2021. "Spatially explicit analyses of sustainable agricultural residue potential for bioenergy in China under various soil and land management scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Wu, Bo & Wang, Yan-Wei & Dai, Yong-Hua & Song, Chao & Zhu, Qi-Li & Qin, Han & Tan, Fu-Rong & Chen, Han-Cheng & Dai, Li-Chun & Hu, Guo-Quan & He, Ming-Xiong, 2021. "Current status and future prospective of bio-ethanol industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Qin, Zhangcai & Zhuang, Qianlai & Cai, Ximing & He, Yujie & Huang, Yao & Jiang, Dong & Lin, Erda & Liu, Yaling & Tang, Ya & Wang, Michael Q., 2018. "Biomass and biofuels in China: Toward bioenergy resource potentials and their impacts on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2387-2400.
    6. Fang, Yan Ru & Wu, Yi & Xie, Guang Hui, 2019. "Crop residue utilizations and potential for bioethanol production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    7. Yang, Yang & Liang, Sai & Yang, Yi & Xie, Guang Hui & Zhao, Wei, 2022. "Spatial disparity of life-cycle greenhouse gas emissions from corn straw-based bioenergy production in China," Applied Energy, Elsevier, vol. 305(C).
    8. Chen, Xiaoguang, 2016. "Economic potential of biomass supply from crop residues in China," Applied Energy, Elsevier, vol. 166(C), pages 141-149.
    9. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    10. Zhang, Shuangqi & Deng, Mengsi & Shan, Ming & Zhou, Chuang & Liu, Wei & Xu, Xiaoqiu & Yang, Xudong, 2019. "Energy and environmental impact assessment of straw return and substitution of straw briquettes for heating coal in rural China," Energy Policy, Elsevier, vol. 128(C), pages 654-664.
    11. Zhang, Weishi & Wang, Can & Zhang, Long & Xu, Ying & Cui, Yuanzheng & Lu, Zifeng & Streets, David G., 2018. "Evaluation of the performance of distributed and centralized biomass technologies in rural China," Renewable Energy, Elsevier, vol. 125(C), pages 445-455.
    12. Qyyum, Muhammad Abdul & Haider, Junaid & Qadeer, Kinza & Valentina, Valentina & Khan, Amin & Yasin, Muhammad & Aslam, Muhammad & De Guido, Giorgia & Pellegrini, Laura A. & Lee, Moonyong, 2020. "Biogas to liquefied biomethane: Assessment of 3P's–Production, processing, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    13. Hameed, Zeeshan & Aslam, Muhammad & Khan, Zakir & Maqsood, Khuram & Atabani, A.E. & Ghauri, Moinuddin & Khurram, Muhammad Shahzad & Rehan, Mohammad & Nizami, Abdul-Sattar, 2021. "Gasification of municipal solid waste blends with biomass for energy production and resources recovery: Current status, hybrid technologies and innovative prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    14. Yang, Jing & Song, Kaihui & Hou, Jian & Zhang, Peidong & Wu, Jinhu, 2017. "Temporal and spacial dynamics of bioenergy-related CO2 emissions and underlying forces analysis in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1323-1330.
    15. Chen, Qiu & Liu, Tianbiao, 2017. "Biogas system in rural China: Upgrading from decentralized to centralized?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 933-944.
    16. Yan, Pu & Xiao, Chunwang & Xu, Li & Yu, Guirui & Li, Ang & Piao, Shilong & He, Nianpeng, 2020. "Biomass energy in China's terrestrial ecosystems: Insights into the nation's sustainable energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    17. Wan, Zhanghao & Yang, Shiliang & Hu, Jianhang & Bao, Guirong & Wang, Hua, 2022. "Numerical analysis of wood air gasification in a bubbling fluidized gasifier with reactive charcoal as bed material," Renewable Energy, Elsevier, vol. 188(C), pages 282-298.
    18. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    19. Zhao, Xiqiang & Zhou, Xing & Wang, Guoxiu & Zhou, Ping & Wang, Wenlong & Song, Zhanlong, 2022. "Evaluating the effect of torrefaction on the pyrolysis of biomass and the biochar catalytic performance on dry reforming of methane," Renewable Energy, Elsevier, vol. 192(C), pages 313-325.
    20. Deng, Yanfei & Xu, Jiuping & Liu, Ying & Mancl, Karen, 2014. "Biogas as a sustainable energy source in China: Regional development strategy application and decision making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 294-303.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:14:p:3729-:d:386948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.