Advanced Search
MyIDEAS: Login to save this article or follow this journal

Potential usage, vertical value chain and challenge of biomass resource: Evidence from China’s crop residues

Contents:

Author Info

  • Yang, Jun
  • Wang, Xiaobing
  • Ma, Hengyun
  • Bai, Junfei
  • Jiang, Ye
  • Yu, Hai

Abstract

China’s energy needs and its environment are facing great challenges because of the country’s rapid urbanization and industrialization. It is China’s strategic choice to exploit renewable energy to guarantee its energy security and reduce CO2 emissions. Crop residue has been identified and targeted by the Chinese government as a promising renewable energy resource. The purposes of this study are to investigate the potential supply of crop residue nationally and regionally, the vertical value chain from the field to final usage of these crop residues, as well as to conduct cost-benefit analysis on power plant-based crop residue. Our results show that the large amount of crop residue in China has great potential to meet the country’s demand for renewable energy. Crop residues, however, are distributed unequally across regions. Therefore the use of crop residues to produce energy should be different across provinces, especially with respect to large power generation plants. Government supports right now are critical for power plants based on crop residue to survive. Based on our findings, it is suggested that China should attach more importance to technology innovation and creative policy reforms to improve the overall efficiency of the industry and reduce the cost of feedstock.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0306261913008398
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Applied Energy.

Volume (Year): 114 (2014)
Issue (Month): C ()
Pages: 717-723

as in new window
Handle: RePEc:eee:appene:v:114:y:2014:i:c:p:717-723

Contact details of provider:
Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description

Order Information:
Postal: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic
Web: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/bibliographic

Related research

Keywords: Renewable energy; Crop residue; Vertical value chain; Cost-benefit analysis;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Jansson, Christer & Westerbergh, Anna & Zhang, Jiaming & Hu, Xinwen & Sun, Chuanxin, 2009. "Cassava, a potential biofuel crop in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages S95-S99, November.
  2. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
  3. Liu, Jin & Wu, Jianguo & Liu, Fengqiao & Han, Xingguo, 2012. "Quantitative assessment of bioenergy from crop stalk resources in Inner Mongolia, China," Applied Energy, Elsevier, vol. 93(C), pages 305-318.
  4. Yu, Suiran & Tao, Jing, 2009. "Economic, energy and environmental evaluations of biomass-based fuel ethanol projects based on life cycle assessment and simulation," Applied Energy, Elsevier, vol. 86(Supplemen), pages S178-S188, November.
  5. Tian, Yishui & Zhao, Lixin & Meng, Haibo & Sun, Liying & Yan, Jinyue, 2009. "Estimation of un-used land potential for biofuels development in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages S77-S85, November.
  6. Junfeng, Li & Wan, Yih-huei & Ohi, James M., 1997. "Renewable energy development in China: Resource assessment, technology status, and greenhouse gas mitigation potential," Applied Energy, Elsevier, vol. 56(3-4), pages 381-394, March.
  7. La Rovere, Emilio Lèbre & Pereira, André Santos & Simões, André Felipe, 2011. "Biofuels and Sustainable Energy Development in Brazil," World Development, Elsevier, vol. 39(6), pages 1026-1036, June.
  8. Hallam, Arne & Anderson, I. C. & Buxton, D. R., 2001. "Comparative Economic Analysis of Perennial, Annual and Intercrops for Biomass Production," Staff General Research Papers 5076, Iowa State University, Department of Economics.
  9. Li, Shi-Zhong & Chan-Halbrendt, Catherine, 2009. "Ethanol production in (the) People's Republic of China: Potential and technologies," Applied Energy, Elsevier, vol. 86(Supplemen), pages S162-S169, November.
  10. Jun Yang & Huanguang Qiu & Jikun Huang & Scott Rozelle, 2008. "Fighting global food price rises in the developing world: the response of China and its effect on domestic and world markets," Agricultural Economics, International Association of Agricultural Economists, vol. 39(s1), pages 453-464, November.
  11. Huang, Jikun & Yang, Jun & Msangi, Siwa & Rozelle, Scott & Weersink, Alfons, 2012. "Global biofuel production and poverty in China," Applied Energy, Elsevier, vol. 98(C), pages 246-255.
  12. Nguyen, Thu Lan T. & Hermansen, John E. & Mogensen, Lisbeth, 2013. "Environmental performance of crop residues as an energy source for electricity production: The case of wheat straw in Denmark," Applied Energy, Elsevier, vol. 104(C), pages 633-641.
  13. Zhang, Qin & Zhou, Dequn & Zhou, Peng & Ding, Hao, 2013. "Cost Analysis of straw-based power generation in Jiangsu Province, China," Applied Energy, Elsevier, vol. 102(C), pages 785-793.
  14. Liu, Wen & Lund, Henrik & Mathiesen, Brian Vad & Zhang, Xiliang, 2011. "Potential of renewable energy systems in China," Applied Energy, Elsevier, vol. 88(2), pages 518-525, February.
  15. Jikun Huang & Jun Yang & Scott Rozelle, 2010. "China's agriculture: drivers of change and implications for China and the rest of world," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 47-55, November.
  16. Ma, Hengyun & Oxley, Les & Gibson, John, 2009. "Gradual reforms and the emergence of energy market in China: Evidence from tests for convergence of energy prices," Energy Policy, Elsevier, vol. 37(11), pages 4834-4850, November.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:114:y:2014:i:c:p:717-723. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.