IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v125y2019icp122-134.html
   My bibliography  Save this article

Undesirable and desirable energy congestion measurements for regional coal-fired power generation industry in China

Author

Listed:
  • Chen, Zhenling
  • Li, Jinkai
  • Zhao, Weigang
  • Yuan, Xiao-Chen
  • Yang, Guo-liang

Abstract

The blind expansion and increasing carbon emissions of the coal-fired power generation industry in China have attracted wide attention at home and abroad. To detect the technical ineffectiveness in the coal-fired power generation industry and the effects of carbon emission reductions, this study developed energy congestion models using data envelopment analysis (DEA). Energy congestion is classified into undesirable energy congestion (UEC) and desirable energy congestion (DEC) under natural disposability and managerial disposability. The UEC and DEC models were used to identify energy congestion, measure the amounts of UEC and DEC, and analyze the sources of inefficiency for regional coal-fired generation industry in China from 2004 to 2013. Our empirical analysis revealed: i) The UEC of coal-fired generation industry has occurred in many regions, most of which are less-developed areas. This indicates that energy is wasted in coal-fired generation industry due to congestion inefficiency. ii) DEC has occurred in a few regions and did not occur in 2013. These provinces where DEC occurred may have a high potential for eco-technology innovation. The method of energy congestion measurement proposed in this study and the research conclusion have reference effect on regional energy conservation and eco-technology innovation.

Suggested Citation

  • Chen, Zhenling & Li, Jinkai & Zhao, Weigang & Yuan, Xiao-Chen & Yang, Guo-liang, 2019. "Undesirable and desirable energy congestion measurements for regional coal-fired power generation industry in China," Energy Policy, Elsevier, vol. 125(C), pages 122-134.
  • Handle: RePEc:eee:enepol:v:125:y:2019:i:c:p:122-134
    DOI: 10.1016/j.enpol.2018.10.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518306815
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.10.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cooper, William W. & Seiford, Lawrence M. & Zhu, Joe, 2000. "A unified additive model approach for evaluating inefficiency and congestion with associated measures in DEA," Socio-Economic Planning Sciences, Elsevier, vol. 34(1), pages 1-25, March.
    2. Wang, Ke & Zhang, Xian & Yu, Xueying & Wei, Yi-Ming & Wang, Bin, 2016. "Emissions trading and abatement cost savings: An estimation of China's thermal power industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1005-1017.
    3. Noura, A.A. & Hosseinzadeh Lotfi, F. & Jahanshahloo, G.R. & Rashidi, S. Fanati & Parker, Barnett R., 2010. "A new method for measuring congestion in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 44(4), pages 240-246, December.
    4. Ramli, Noor Asiah & Munisamy, Susila, 2015. "Eco-efficiency in greenhouse emissions among manufacturing industries: A range adjusted measure," Economic Modelling, Elsevier, vol. 47(C), pages 219-227.
    5. Cooper, W. W. & Deng, Honghui & Gu, Bisheng & Li, Shanling & Thrall, R. M., 2001. "Using DEA to improve the management of congestion in Chinese industries (1981-1997)," Socio-Economic Planning Sciences, Elsevier, vol. 35(4), pages 227-242, December.
    6. Pedro Simões & Rui Marques, 2011. "Performance and congestion analysis of the portuguese hospital services," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(1), pages 39-63, March.
    7. Wu, Jie & An, Qingxian & Xiong, Beibei & Chen, Ya, 2013. "Congestion measurement for regional industries in China: A data envelopment analysis approach with undesirable outputs," Energy Policy, Elsevier, vol. 57(C), pages 7-13.
    8. Marques, Rui Cunha & Simões, Pedro, 2010. "Measuring the influence of congestion on efficiency in worldwide airports," Journal of Air Transport Management, Elsevier, vol. 16(6), pages 334-336.
    9. Sueyoshi, Toshiyuki & Goto, Mika, 2016. "Undesirable congestion under natural disposability and desirable congestion under managerial disposability in U.S. electric power industry measured by DEA environmental assessment," Energy Economics, Elsevier, vol. 55(C), pages 173-188.
    10. Trotta, Gianluca, 2018. "Factors affecting energy-saving behaviours and energy efficiency investments in British households," Energy Policy, Elsevier, vol. 114(C), pages 529-539.
    11. Tone, Kaoru & Sahoo, Biresh K., 2004. "Degree of scale economies and congestion: A unified DEA approach," European Journal of Operational Research, Elsevier, vol. 158(3), pages 755-772, November.
    12. F. Wu & P. Zhou & D. Zhou, 2015. "Measuring Energy Congestion in Chinese Industrial Sectors: A Slacks-Based DEA Approach," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 479-494, October.
    13. Kao, Chiang, 2010. "Congestion measurement and elimination under the framework of data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 123(2), pages 257-265, February.
    14. Emrouznejad, Ali & Yang, Guo-liang, 2016. "CO2 emissions reduction of Chinese light manufacturing industries: A novel RAM-based global Malmquist–Luenberger productivity index," Energy Policy, Elsevier, vol. 96(C), pages 397-410.
    15. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    16. Cooper, W. W. & Deng, Honghui & Huang, Zhimin M. & Li, Susan X., 2002. "A one-model approach to congestion in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 36(4), pages 231-238, December.
    17. Wei, Quanling & Yan, Hong, 2004. "Congestion and returns to scale in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 153(3), pages 641-660, March.
    18. Wang, Yi-Shu & Xie, Bai-Chen & Shang, Li-Feng & Li, Wen-Hua, 2013. "Measures to improve the performance of China’s thermal power industry in view of cost efficiency," Applied Energy, Elsevier, vol. 112(C), pages 1078-1086.
    19. Zhao, Weigang & Cao, Yunfei & Miao, Bo & Wang, Ke & Wei, Yi-Ming, 2018. "Impacts of shifting China's final energy consumption to electricity on CO2 emission reduction," Energy Economics, Elsevier, vol. 71(C), pages 359-369.
    20. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "DEA environmental assessment of coal fired power plants: Methodological comparison between radial and non-radial models," Energy Economics, Elsevier, vol. 34(6), pages 1854-1863.
    21. Brockett, Patrick L. & Cooper, William W. & Wang, Yuying & Shin, Hong-Chul, 1998. "Inefficiency and congestion in Chinese production before and after the 1978 economic reforms," Socio-Economic Planning Sciences, Elsevier, vol. 32(1), pages 1-20, March.
    22. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    23. Seiford, Lawrence M. & Zhu, Joe, 2002. "Modeling undesirable factors in efficiency evaluation," European Journal of Operational Research, Elsevier, vol. 142(1), pages 16-20, October.
    24. Sueyoshi, Toshiyuki & Goto, Mika, 2012. "Returns to scale and damages to scale under natural and managerial disposability: Strategy, efficiency and competitiveness of petroleum firms," Energy Economics, Elsevier, vol. 34(3), pages 645-662.
    25. Wei, Yi-Ming & Liao, Hua & Fan, Ying, 2007. "An empirical analysis of energy efficiency in China's iron and steel sector," Energy, Elsevier, vol. 32(12), pages 2262-2270.
    26. Weigang Zhao & Yunfei Cao & Bo Miao & Ke Wang & Yi-Ming Wei, 2018. "Impacts of shifting China¡¯s final energy consumption to electricity on CO2 emission reduction," CEEP-BIT Working Papers 115, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    27. Hu, Jin-Li & Chang, Ming-Chung & Tsay, Hui-Wen, 2017. "The congestion total-factor energy efficiency of regions in Taiwan," Energy Policy, Elsevier, vol. 110(C), pages 710-718.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiang, Lei & Zhou, Haifeng & He, Shixiong, 2021. "Does energy efficiency increase at the expense of output performance: Evidence from manufacturing firms in Jiangsu province, China," Energy, Elsevier, vol. 220(C).
    2. Lin, Hongbo & Zhang, Xiaoling & Chen, Zhenling & Zheng, Heyun, 2020. "Estimating the potential output and output gap for China's coal cities with pollutants reduction," Resources Policy, Elsevier, vol. 68(C).
    3. Zhang, Zhimin & Elshkaki, Ayman, 2022. "An analysis of the supply-side factors of geological exploration in China based on provincial panel data between 1999 and 2017," Resources Policy, Elsevier, vol. 76(C).
    4. Feihua Huang & Yue Du & Debao Hu & Bin Zhang, 2021. "Sustainable Performance Analysis of Power Supply Chain System from the Perspective of Technology and Management," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    5. Chen, Zhenling & Zhao, Weigang & Zheng, Heyun, 2021. "Potential output gap in China's regional coal-fired power sector under the constraint of carbon emission reduction," Energy Policy, Elsevier, vol. 148(PA).
    6. Chen, Zhenling & Zhang, Xiaoling & Ni, Guohua, 2020. "Decomposing capacity utilization under carbon dioxide emissions reduction constraints in data envelopment analysis: An application to Chinese regions," Energy Policy, Elsevier, vol. 139(C).
    7. Liu, Zuankuo & Xin, Li, 2019. "Has China's Belt and Road Initiative promoted its green total factor productivity?——Evidence from primary provinces along the route," Energy Policy, Elsevier, vol. 129(C), pages 360-369.
    8. Pang, Qinghua & Qiu, Man & Zhang, Lina & Chiu, Yung-ho, 2023. "Congestion effects of energy and capital in China's carbon emission reduction: Evidence from provincial levels," Energy, Elsevier, vol. 274(C).
    9. Tran, Bao-Linh & Chen, Chi-Chung & Tseng, Wei-Chun, 2022. "Causality between energy consumption and economic growth in the presence of GDP threshold effect: Evidence from OECD countries," Energy, Elsevier, vol. 251(C).
    10. Zhu, Qingyuan & Xu, Shuqi & Sun, Jiasen & Li, Xingchen & Zhou, Dequn, 2022. "Energy efficiency evaluation of power supply system: A data-driven approach based on shared resources," Applied Energy, Elsevier, vol. 312(C).
    11. Hongzhang Chen & Haiwen Yang, 2020. "Measurement and Structural Factors Influencing China’s Provincial Total-Factor Energy Efficiency Under Resource and Environmental Constraints," SAGE Open, , vol. 10(3), pages 21582440209, July.
    12. Jiang, Yufan & Wang, Hongyan & Liu, Zuankuo, 2021. "The impact of the free trade zone on green total factor productivity ——evidence from the shanghai pilot free trade zone," Energy Policy, Elsevier, vol. 148(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Wang & Yong Zha, 2014. "Distinguishing Technical Inefficiency from Desirable and Undesirable Congestion with an Application to Regional Industries in China," Sustainability, MDPI, vol. 6(12), pages 1-19, December.
    2. Yang, Zhuofan & Shi, Yong & Yan, Hong, 2017. "Analysis on pure e-commerce congestion effect, productivity effect and profitability in China," Socio-Economic Planning Sciences, Elsevier, vol. 57(C), pages 35-49.
    3. Mehdiloozad, Mahmood & Zhu, Joe & Sahoo, Biresh K., 2018. "Identification of congestion in data envelopment analysis under the occurrence of multiple projections: A reliable method capable of dealing with negative data," European Journal of Operational Research, Elsevier, vol. 265(2), pages 644-654.
    4. Zhang, Yue-Jun & Liu, Jing-Yue & Su, Bin, 2020. "Carbon congestion effects in China's industry: Evidence from provincial and sectoral levels," Energy Economics, Elsevier, vol. 86(C).
    5. Pang, Qinghua & Qiu, Man & Zhang, Lina & Chiu, Yung-ho, 2023. "Congestion effects of energy and capital in China's carbon emission reduction: Evidence from provincial levels," Energy, Elsevier, vol. 274(C).
    6. Ren, Xian-tong & Fukuyama, Hirofumi & Yang, Guo-liang, 2022. "Eliminating congestion by increasing inputs in R&D activities of Chinese universities," Omega, Elsevier, vol. 110(C).
    7. F. Wu & P. Zhou & D. Zhou, 2015. "Measuring Energy Congestion in Chinese Industrial Sectors: A Slacks-Based DEA Approach," Computational Economics, Springer;Society for Computational Economics, vol. 46(3), pages 479-494, October.
    8. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    9. Flegg, A.T. & Allen, D.O., 2009. "Congestion in the Chinese automobile and textile industries revisited," Socio-Economic Planning Sciences, Elsevier, vol. 43(3), pages 177-191, September.
    10. Fang, Lei, 2015. "Congestion measurement in nonparametric analysis under the weakly disposable technology," European Journal of Operational Research, Elsevier, vol. 245(1), pages 203-208.
    11. Hu, Jin-Li & Chang, Ming-Chung & Tsay, Hui-Wen, 2017. "The congestion total-factor energy efficiency of regions in Taiwan," Energy Policy, Elsevier, vol. 110(C), pages 710-718.
    12. Kao, Chiang, 2010. "Congestion measurement and elimination under the framework of data envelopment analysis," International Journal of Production Economics, Elsevier, vol. 123(2), pages 257-265, February.
    13. Glover, Fred & Sueyoshi, Toshiyuki, 2009. "Contributions of Professor William W. Cooper in Operations Research and Management Science," European Journal of Operational Research, Elsevier, vol. 197(1), pages 1-16, August.
    14. Ke Wang & Xueying Yu, 2017. "Industrial Energy and Environment Efficiency of Chinese Cities: An Analysis Based on Range-Adjusted Measure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1023-1042, July.
    15. Wu, Jie & An, Qingxian & Xiong, Beibei & Chen, Ya, 2013. "Congestion measurement for regional industries in China: A data envelopment analysis approach with undesirable outputs," Energy Policy, Elsevier, vol. 57(C), pages 7-13.
    16. Wei, Quanling & Yan, Hong, 2009. "Weak congestion in output additive data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 43(1), pages 40-54, March.
    17. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    18. Tony Flegg & David O. Allen, 2006. "Does it matter How We Measure Congestion?," Working Papers 0614, Department of Accounting, Economics and Finance, Bristol Business School, University of the West of England, Bristol.
    19. A.T. Flegg & D.O. Allen, 2007. "Congestion in the Chinese automobile and textile industries revisited," Working Papers 0702, Department of Accounting, Economics and Finance, Bristol Business School, University of the West of England, Bristol.
    20. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:125:y:2019:i:c:p:122-134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.