IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v120y2018icp250-258.html
   My bibliography  Save this article

Estimating Peak uranium production in China – Based on a Stella model

Author

Listed:
  • Fang, Jianchun
  • Lau, Chi Keung Marco
  • Lu, Zhou
  • Wu, Wanshan

Abstract

This paper uses the Logistic Curve and the STELLA model to simulate the Hubbert Peak uranium production in China. We used three scenarios to estimate China's Peak uranium. And the results are quite robust. According to Scenario 3, the Hubbert Peak uranium production is expected to be reached in 2065 with 4605 t per year. Before the peak, China's uranium demand will grow at the rate of about 7.69% per year, which is about three times the growth rate of production. China's uranium import dependence is estimated to continue to increase. In order to improve uranium resources security, the Chinese government needs to increase investment in uranium ore exploration, encourage private sector's investment in uranium production to promote competition, and improve cooperation with non-uranium mining enterprises for more efficient use of resources. To enhance the country's uranium security, China should establish development funds, accelerate acquisition of uranium enterprises abroad, increase R&D in the unconventional uranium resources such as phosphate mine, and take advantage of price downturn in uranium market to increase strategic reserves.

Suggested Citation

  • Fang, Jianchun & Lau, Chi Keung Marco & Lu, Zhou & Wu, Wanshan, 2018. "Estimating Peak uranium production in China – Based on a Stella model," Energy Policy, Elsevier, vol. 120(C), pages 250-258.
  • Handle: RePEc:eee:enepol:v:120:y:2018:i:c:p:250-258
    DOI: 10.1016/j.enpol.2018.05.049
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518303525
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.05.049?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reynolds, Douglas B., 2014. "World oil production trend: Comparing Hubbert multi-cycle curves," Ecological Economics, Elsevier, vol. 98(C), pages 62-71.
    2. Feng, Lianyong & Li, Junchen & Pang, Xiongqi, 2008. "China's oil reserve forecast and analysis based on peak oil models," Energy Policy, Elsevier, vol. 36(11), pages 4149-4153, November.
    3. Wang, Jianliang & Feng, Lianyong & Zhao, Lin & Snowden, Simon & Wang, Xu, 2011. "A comparison of two typical multicyclic models used to forecast the world's conventional oil production," Energy Policy, Elsevier, vol. 39(12), pages 7616-7621.
    4. Russell S. Uhler, 1976. "Costs and Supply in Petroleum Exploration: The Case of Alberta," Canadian Journal of Economics, Canadian Economics Association, vol. 9(1), pages 72-90, February.
    5. Szklo, Alexandre & Machado, Giovani & Schaeffer, Roberto, 2007. "Future oil production in Brazil--Estimates based on a Hubbert model," Energy Policy, Elsevier, vol. 35(4), pages 2360-2367, April.
    6. Douglas B. Reynolds & Marek Kolodziej, 2009. "North American Natural Gas Supply Forecast: The Hubbert Method Including the Effects of Institutions," Energies, MDPI, vol. 2(2), pages 1-38, May.
    7. Mohr, S.H. & Evans, G.M., 2010. "Long term prediction of unconventional oil production," Energy Policy, Elsevier, vol. 38(1), pages 265-276, January.
    8. Lin, Bo-qiang & Liu, Jiang-hua, 2010. "Estimating coal production peak and trends of coal imports in China," Energy Policy, Elsevier, vol. 38(1), pages 512-519, January.
    9. World Bank & Institute for Health Metrics and Evaluation, 2016. "The Cost of Air Pollution," World Bank Publications - Reports 25013, The World Bank Group.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kerber, Samuel W. & Gilbert, Alexander Q. & Deinert, Mark R. & Bazilian, Morgan D., 2021. "Understanding the nexus of energy, environment and conflict: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Yu Mao & Jinlong Yong & Qian Liu & Baoshan Wu & Henglei Chen & Youhua Hu & Guangwen Feng, 2022. "Heavy Metals/Metalloids in Soil of a Uranium Tailings Pond in Northwest China: Distribution and Relationship with Soil Physicochemical Properties and Radionuclides," Sustainability, MDPI, vol. 14(9), pages 1-13, April.
    3. Zirui Wang & Wanli Xing, 2022. "Study on the Characteristics and Evolution Trends of Global Uranium Resource Trade from the Perspective of a Complex Network," Sustainability, MDPI, vol. 14(22), pages 1-23, November.
    4. Lau, Chi Keung & Soliman, Alaa M. & Albasu, Joseph & Gozgor, Giray, 2023. "Dependence structures among geopolitical risks, energy prices, and carbon emissions prices," Resources Policy, Elsevier, vol. 83(C).
    5. Shang, Delei & Geissler, Bernhard & Mew, Michael & Satalkina, Liliya & Zenk, Lukas & Tulsidas, Harikrishnan & Barker, Lee & El-Yahyaoui, Adil & Hussein, Ahmed & Taha, Mohamed & Zheng, Yanhua & Wang, M, 2021. "Unconventional uranium in China's phosphate rock: Review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    6. Al Rawashdeh, Rami, 2020. "World peak potash: An analytical study," Resources Policy, Elsevier, vol. 69(C).
    7. Xu, Bin & Lin, Boqiang, 2019. "Can expanding natural gas consumption reduce China's CO2 emissions?," Energy Economics, Elsevier, vol. 81(C), pages 393-407.
    8. Marian Sofranko & Samer Khouri & Olga Vegsoova & Peter Kacmary & Tawfik Mudarri & Martin Koncek & Maxim Tyulenev & Zuzana Simkova, 2020. "Possibilities of Uranium Deposit Kuriskova Mining and Its Influence on the Energy Potential of Slovakia from Own Resources," Energies, MDPI, vol. 13(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chavez-Rodriguez, Mauro F. & Szklo, Alexandre & de Lucena, Andre Frossard Pereira, 2015. "Analysis of past and future oil production in Peru under a Hubbert approach," Energy Policy, Elsevier, vol. 77(C), pages 140-151.
    2. Wang, Jianliang & Feng, Lianyong & Steve, Mohr & Tang, Xu & Gail, Tverberg E. & Mikael, Höök, 2015. "China's unconventional oil: A review of its resources and outlook for long-term production," Energy, Elsevier, vol. 82(C), pages 31-42.
    3. Wang, Ke & Feng, Lianyong & Wang, Jianliang & Xiong, Yi & Tverberg, Gail E., 2016. "An oil production forecast for China considering economic limits," Energy, Elsevier, vol. 113(C), pages 586-596.
    4. Syed Aziz Ur Rehman & Yanpeng Cai & Nayyar Hussain Mirjat & Gordhan Das Walasai & Izaz Ali Shah & Sharafat Ali, 2017. "The Future of Sustainable Energy Production in Pakistan: A System Dynamics-Based Approach for Estimating Hubbert Peaks," Energies, MDPI, vol. 10(11), pages 1-24, November.
    5. Wang, Xibo & Lei, Yalin & Ge, Jianping & Wu, Sanmang, 2015. "Production forecast of China׳s rare earths based on the Generalized Weng model and policy recommendations," Resources Policy, Elsevier, vol. 43(C), pages 11-18.
    6. Yang, Guangfei & Li, Xianneng & Wang, Jianliang & Lian, Lian & Ma, Tieju, 2015. "Modeling oil production based on symbolic regression," Energy Policy, Elsevier, vol. 82(C), pages 48-61.
    7. Zhang, Yujiang & Feng, Guorui & Zhang, Min & Ren, Hongrui & Bai, Jinwen & Guo, Yuxia & Jiang, Haina & Kang, Lixun, 2016. "Residual coal exploitation and its impact on sustainable development of the coal industry in China," Energy Policy, Elsevier, vol. 96(C), pages 534-541.
    8. Wang, Jianliang & Mohr, Steve & Feng, Lianyong & Liu, Huihui & Tverberg, Gail E., 2016. "Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth," Energy Policy, Elsevier, vol. 88(C), pages 389-401.
    9. Höök, Mikael & Tang, Xu, 2013. "Depletion of fossil fuels and anthropogenic climate change—A review," Energy Policy, Elsevier, vol. 52(C), pages 797-809.
    10. Wang, Ting & Lin, Boqiang, 2014. "Impacts of unconventional gas development on China׳s natural gas production and import," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 546-554.
    11. Wang, Jianliang & Feng, Lianyong & Tverberg, Gail E., 2013. "An analysis of China's coal supply and its impact on China's future economic growth," Energy Policy, Elsevier, vol. 57(C), pages 542-551.
    12. Wang, Jianzhou & Jiang, Haiyan & Zhou, Qingping & Wu, Jie & Qin, Shanshan, 2016. "China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1149-1167.
    13. Hu, Yan & Hall, Charles A.S. & Wang, Jianliang & Feng, Lianyong & Poisson, Alexandre, 2013. "Energy Return on Investment (EROI) of China's conventional fossil fuels: Historical and future trends," Energy, Elsevier, vol. 54(C), pages 352-364.
    14. Reynolds, Douglas B. & Baek, Jungho, 2012. "Much ado about Hotelling: Beware the ides of Hubbert," Energy Economics, Elsevier, vol. 34(1), pages 162-170.
    15. Xibo Wang & Mingtao Yao & Jiashuo Li & Kexue Zhang & He Zhu & Minsi Zheng, 2017. "China’s Rare Earths Production Forecasting and Sustainable Development Policy Implications," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    16. Waisman, Henri & Rozenberg, Julie & Sassi, Olivier & Hourcade, Jean-Charles, 2012. "Peak Oil profiles through the lens of a general equilibrium assessment," Energy Policy, Elsevier, vol. 48(C), pages 744-753.
    17. Reynolds, Douglas B., 2014. "World oil production trend: Comparing Hubbert multi-cycle curves," Ecological Economics, Elsevier, vol. 98(C), pages 62-71.
    18. Hosseini, Seyed Hossein & Shakouri G., Hamed, 2016. "A study on the future of unconventional oil development under different oil price scenarios: A system dynamics approach," Energy Policy, Elsevier, vol. 91(C), pages 64-74.
    19. Wang, Jianliang & Feng, Lianyong & Davidsson, Simon & Höök, Mikael, 2013. "Chinese coal supply and future production outlooks," Energy, Elsevier, vol. 60(C), pages 204-214.
    20. Goldemberg, José & Schaeffer, Roberto & Szklo, Alexandre & Lucchesi, Rodrigo, 2014. "Oil and natural gas prospects in South America: Can the petroleum industry pave the way for renewables in Brazil?," Energy Policy, Elsevier, vol. 64(C), pages 58-70.

    More about this item

    Keywords

    Q47; C15; O13; Uranium; Hubbert Peak; Logistic curve; STELLA model;
    All these keywords.

    JEL classification:

    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:120:y:2018:i:c:p:250-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.