IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i11p1858-d118630.html
   My bibliography  Save this article

The Future of Sustainable Energy Production in Pakistan: A System Dynamics-Based Approach for Estimating Hubbert Peaks

Author

Listed:
  • Syed Aziz Ur Rehman

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Yanpeng Cai

    (State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
    Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, SK S4S 0A2, Canada)

  • Nayyar Hussain Mirjat

    (Department of Electrical Engineering, Energy Environmental Engineering Research Group, Mehran University of Engineering and Technology, Jamshoro 76062, Pakistan)

  • Gordhan Das Walasai

    (Department of Mechanical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah 67450, Pakistan)

  • Izaz Ali Shah

    (State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Sharafat Ali

    (State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China)

Abstract

This paper presents an effort pertaining to the simulation of the future production in Pakistan of different primary energy resources, i.e., coal, natural gas and crude oil, thereby constructing Hubbert peaks. In this context, the past 45 years’ production data of primary energy resources of Pakistan have been analyzed and simulated using a generic STELLA (Systems Thinking, Experimental Learning Laboratory with Animation) model. The results show that the Hubbert peak of Pakistan’s crude oil production has been somehow already achieved in 2013, with the highest production of 4.52 million toe, which is 1.51 times the production in 2000. Similarly, the natural gas peak production is expected in 2024 with a production of 32.70 million toe which shall be 1.96-fold the extraction of the resource in the year 2000. On the other hand, the coal production in the country has been historically very low and with a constant production rate that is gradually picking up, the peak production year for the coal is anticipated to be in the year 2080 with an estimated production of 134.06 million. Based on the results of this study, which provide a greater understanding of future energy patterns, it is recommended that an energy security policy be devised for the country to ensure sustained supplies in the future.

Suggested Citation

  • Syed Aziz Ur Rehman & Yanpeng Cai & Nayyar Hussain Mirjat & Gordhan Das Walasai & Izaz Ali Shah & Sharafat Ali, 2017. "The Future of Sustainable Energy Production in Pakistan: A System Dynamics-Based Approach for Estimating Hubbert Peaks," Energies, MDPI, vol. 10(11), pages 1-24, November.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1858-:d:118630
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/11/1858/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/11/1858/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, Muhammad Arshad, 2015. "Modelling and forecasting the demand for natural gas in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1145-1159.
    2. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    3. Rauf, Omer & Wang, Shujie & Yuan, Peng & Tan, Junzhe, 2015. "An overview of energy status and development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 892-931.
    4. Ugo Bardi & Alessandro Lavacchi, 2009. "A Simple Interpretation of Hubbert’s Model of Resource Exploitation," Energies, MDPI, vol. 2(3), pages 1-16, August.
    5. Malik, Sidra Nisar & Sukhera, Osama Rafiq, 2012. "Management of natural gas resources and search for alternative renewable energy resources: A case study of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1282-1290.
    6. Reynolds, Douglas B., 2014. "World oil production trend: Comparing Hubbert multi-cycle curves," Ecological Economics, Elsevier, vol. 98(C), pages 62-71.
    7. Gallagher, Brian, 2011. "Peak oil analyzed with a logistic function and idealized Hubbert curve," Energy Policy, Elsevier, vol. 39(2), pages 790-802, February.
    8. Tao, Zaipu & Li, Mingyu, 2007. "What is the limit of Chinese coal supplies--A STELLA model of Hubbert Peak," Energy Policy, Elsevier, vol. 35(6), pages 3145-3154, June.
    9. Uddin, Waqar & Khan, B. & Shaukat, Neelofar & Majid, Muhammad & Mujtaba, G. & Mehmood, Arshad & Ali, S.M. & Younas, U. & Anwar, Muhammad & Almeshal, Abdullah M., 2016. "Biogas potential for electric power generation in Pakistan: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 25-33.
    10. Lin, Boqiang & Wang, Ting, 2012. "Forecasting natural gas supply in China: Production peak and import trends," Energy Policy, Elsevier, vol. 49(C), pages 225-233.
    11. Shaikh, Faheemullah & Ji, Qiang & Fan, Ying, 2015. "The diagnosis of an electricity crisis and alternative energy development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1172-1185.
    12. Douggar, Mohammed G., 1995. "Energy situation in Pakistan: options and issues," Renewable Energy, Elsevier, vol. 6(2), pages 151-157.
    13. Rehrl, Tobias & Friedrich, Rainer, 2006. "Modelling long-term oil price and extraction with a Hubbert approach: The LOPEX model," Energy Policy, Elsevier, vol. 34(15), pages 2413-2428, October.
    14. David Keith & Juan Moreno-Cruz, 2011. "Pitfalls of coal peak prediction," Nature, Nature, vol. 469(7331), pages 472-472, January.
    15. Mirjat, Nayyar Hussain & Uqaili, Mohammad Aslam & Harijan, Khanji & Valasai, Gordhan Das & Shaikh, Faheemullah & Waris, M., 2017. "A review of energy and power planning and policies of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 110-127.
    16. Wang, Jianzhou & Jiang, Haiyan & Zhou, Qingping & Wu, Jie & Qin, Shanshan, 2016. "China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1149-1167.
    17. Robert J. Brecha, 2013. "Ten Reasons to Take Peak Oil Seriously," Sustainability, MDPI, vol. 5(2), pages 1-31, February.
    18. Szklo, Alexandre & Machado, Giovani & Schaeffer, Roberto, 2007. "Future oil production in Brazil--Estimates based on a Hubbert model," Energy Policy, Elsevier, vol. 35(4), pages 2360-2367, April.
    19. Jakobsson, Kristofer & Bentley, Roger & Söderbergh, Bengt & Aleklett, Kjell, 2012. "The end of cheap oil: Bottom-up economic and geologic modeling of aggregate oil production curves," Energy Policy, Elsevier, vol. 41(C), pages 860-870.
    20. Muneer, T. & Asif, M., 2007. "Prospects for secure and sustainable electricity supply for Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(4), pages 654-671, May.
    21. Bhutto, Abdul Waheed & Bazmi, Aqeel Ahmed & Zahedi, Gholamreza, 2011. "Greener energy: Issues and challenges for Pakistan--Biomass energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3207-3219, August.
    22. Valasai, Gordhan Das & Uqaili, Muhammad Aslam & Memon, HafeezUr Rahman & Samoo, Saleem Raza & Mirjat, Nayyar Hussain & Harijan, Khanji, 2017. "Overcoming electricity crisis in Pakistan: A review of sustainable electricity options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 734-745.
    23. Khan, Hassan A. & Pervaiz, Saad, 2013. "Technological review on solar PV in Pakistan: Scope, practices and recommendations for optimized system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 147-154.
    24. Ziad Alahdad, 2012. "Pakistan’s Energy Sector: From Crisis to Crisis-Breaking the Chain," PIDE Monograph Series 2012:6, Pakistan Institute of Development Economics.
    25. Chavez-Rodriguez, Mauro F. & Szklo, Alexandre & de Lucena, Andre Frossard Pereira, 2015. "Analysis of past and future oil production in Peru under a Hubbert approach," Energy Policy, Elsevier, vol. 77(C), pages 140-151.
    26. Zhao, Lin & Feng, Lianyong & Hall, Charles A.S., 2009. "Is peakoilism coming?," Energy Policy, Elsevier, vol. 37(6), pages 2136-2138, June.
    27. Kumar, Saten & Shahbaz, Muhammad, 2010. "Coal Consumption and Economic Growth Revisited: Structural Breaks, Cointegration and Causality Tests for Pakistan," MPRA Paper 26151, University Library of Munich, Germany.
    28. Lin, Bo-qiang & Liu, Jiang-hua, 2010. "Estimating coal production peak and trends of coal imports in China," Energy Policy, Elsevier, vol. 38(1), pages 512-519, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ur Rehman, Syed Aziz & Cai, Yanpeng & Mirjat, Nayyar Hussain & Walasai, Gordhan Das & Nafees, Mohammad, 2019. "Energy-environment-economy nexus in Pakistan: Lessons from a PAK-TIMES model," Energy Policy, Elsevier, vol. 126(C), pages 200-211.
    2. Bartłomiej Gaweł & Andrzej Paliński, 2021. "Long-Term Natural Gas Consumption Forecasting Based on Analog Method and Fuzzy Decision Tree," Energies, MDPI, vol. 14(16), pages 1-26, August.
    3. Fahad Bin Abdullah & Rizwan Iqbal & Falak Shad Memon & Sadique Ahmad & Mohammed A. El-Affendi, 2023. "Advancing Sustainability in the Power Distribution Industry: An Integrated Framework Analysis," Sustainability, MDPI, vol. 15(10), pages 1-28, May.
    4. Nafees Ali & Xiaodong Fu & Umar Ashraf & Jian Chen & Hung Vo Thanh & Aqsa Anees & Muhammad Shahid Riaz & Misbah Fida & Muhammad Afaq Hussain & Sadam Hussain & Wakeel Hussain & Awais Ahmed, 2022. "Remote Sensing for Surface Coal Mining and Reclamation Monitoring in the Central Salt Range, Punjab, Pakistan," Sustainability, MDPI, vol. 14(16), pages 1-26, August.
    5. Yasmin, Nazia & Grundmann, Philipp, 2020. "Home-cooked energy transitions: Women empowerment and biogas-based cooking technology in Pakistan," Energy Policy, Elsevier, vol. 137(C).
    6. Asif Khan & Sughra Bibi & Lorenzo Ardito & Jiaying Lyu & Hizar Hayat & Anas Mahmud Arif, 2020. "Revisiting the Dynamics of Tourism, Economic Growth, and Environmental Pollutants in the Emerging Economies—Sustainable Tourism Policy Implications," Sustainability, MDPI, vol. 12(6), pages 1-23, March.
    7. Malik, Sadia & Qasim, Maha & Saeed, Hasan & Chang, Youngho & Taghizadeh-Hesary, Farhad, 2020. "Energy security in Pakistan: Perspectives and policy implications from a quantitative analysis," Energy Policy, Elsevier, vol. 144(C).
    8. Arifa Tanveer & Shihong Zeng & Muhammad Irfan & Rui Peng, 2021. "Do Perceived Risk, Perception of Self-Efficacy, and Openness to Technology Matter for Solar PV Adoption? An Application of the Extended Theory of Planned Behavior," Energies, MDPI, vol. 14(16), pages 1-24, August.
    9. Khatri, Krishan Lal & Muhammad, Amir Raza & Soomro, Shakir Ali & Tunio, Nadeem Ahmed & Ali, Muhammad Mubarak, 2021. "Investigation of possible solid waste power potential for distributed generation development to overcome the power crises of Karachi city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    10. Fahad Bin Abdullah & Rizwan Iqbal & Sadique Ahmad & Mohammed A. El-Affendi & Maria Abdullah, 2022. "An Empirical Analysis of Sustainable Energy Security for Energy Policy Recommendations," Sustainability, MDPI, vol. 14(10), pages 1-28, May.
    11. Zeng, Shihong & Tanveer, Arifa & Fu, Xiaolan & Gu, Yuxiao & Irfan, Muhammad, 2022. "Modeling the influence of critical factors on the adoption of green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Syed Aziz Ur Rehman & Yanpeng Cai & Zafar Ali Siyal & Nayyar Hussain Mirjat & Rizwan Fazal & Saif Ur Rehman Kashif, 2019. "Cleaner and Sustainable Energy Production in Pakistan: Lessons Learnt from the Pak-TIMES Model," Energies, MDPI, vol. 13(1), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khatri, Krishan Lal & Muhammad, Amir Raza & Soomro, Shakir Ali & Tunio, Nadeem Ahmed & Ali, Muhammad Mubarak, 2021. "Investigation of possible solid waste power potential for distributed generation development to overcome the power crises of Karachi city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    3. Wajahat Ullah Khan Tareen & Zuha Anjum & Nabila Yasin & Leenah Siddiqui & Ifzana Farhat & Suheel Abdullah Malik & Saad Mekhilef & Mehdi Seyedmahmoudian & Ben Horan & Mohamed Darwish & Muhammad Aamir &, 2018. "The Prospective Non-Conventional Alternate and Renewable Energy Sources in Pakistan—A Focus on Biomass Energy for Power Generation, Transportation, and Industrial Fuel," Energies, MDPI, vol. 11(9), pages 1-49, September.
    4. Wang, Jianzhou & Jiang, Haiyan & Zhou, Qingping & Wu, Jie & Qin, Shanshan, 2016. "China’s natural gas production and consumption analysis based on the multicycle Hubbert model and rolling Grey model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1149-1167.
    5. Tahir, Z.R. & Asim, Muhammad, 2018. "Surface measured solar radiation data and solar energy resource assessment of Pakistan: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2839-2861.
    6. Berk, Istemi & Ediger, Volkan Ş., 2016. "Forecasting the coal production: Hubbert curve application on Turkey's lignite fields," Resources Policy, Elsevier, vol. 50(C), pages 193-203.
    7. Jabeen, Gul & Yan, Qingyou & Ahmad, Munir & Fatima, Nousheen & Jabeen, Maria & Li, Heng & Qamar, Shoaib, 2020. "Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 650-660.
    8. Semenychev, V.K. & Kurkin, E.I. & Semenychev, E.V. & Danilova, A.A., 2017. "Multimodel forecasting of non-renewable resources production," Energy, Elsevier, vol. 130(C), pages 448-460.
    9. Fazal, Rizwan & Rehman, Syed Aziz Ur & Bhatti, M. Ishaq, 2022. "Graph theoretic approach to expose the energy-induced crisis in Pakistan," Energy Policy, Elsevier, vol. 169(C).
    10. Mirjat, Nayyar Hussain & Uqaili, Mohammad Aslam & Harijan, Khanji & Valasai, Gordhan Das & Shaikh, Faheemullah & Waris, M., 2017. "A review of energy and power planning and policies of Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 110-127.
    11. Chavez-Rodriguez, Mauro F. & Szklo, Alexandre & de Lucena, Andre Frossard Pereira, 2015. "Analysis of past and future oil production in Peru under a Hubbert approach," Energy Policy, Elsevier, vol. 77(C), pages 140-151.
    12. Li, Jiaman & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin & Liu, Guixian, 2021. "Natural gas trade network of countries and regions along the belt and road: Where to go in the future?," Resources Policy, Elsevier, vol. 71(C).
    13. Xibo Wang & Mingtao Yao & Jiashuo Li & Kexue Zhang & He Zhu & Minsi Zheng, 2017. "China’s Rare Earths Production Forecasting and Sustainable Development Policy Implications," Sustainability, MDPI, vol. 9(6), pages 1-14, June.
    14. Ur Rehman, Syed Aziz & Cai, Yanpeng & Mirjat, Nayyar Hussain & Walasai, Gordhan Das & Nafees, Mohammad, 2019. "Energy-environment-economy nexus in Pakistan: Lessons from a PAK-TIMES model," Energy Policy, Elsevier, vol. 126(C), pages 200-211.
    15. Xu Tang & Benjamin C. McLellan & Simon Snowden & Baosheng Zhang & Mikael Höök, 2015. "Dilemmas for China: Energy, Economy and Environment," Sustainability, MDPI, vol. 7(5), pages 1-13, May.
    16. Ali, Fahad & Ahmar, Muhammad & Jiang, Yuexiang & AlAhmad, Mohammad, 2021. "A techno-economic assessment of hybrid energy systems in rural Pakistan," Energy, Elsevier, vol. 215(PA).
    17. Ashfaq, Asad & Ianakiev, Anton, 2018. "Features of fully integrated renewable energy atlas for Pakistan; wind, solar and cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 14-27.
    18. Safder, Usman & Hai, Tra Nguyen & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Nationwide policymaking strategies to prevent future electricity crises in developing countries using data-driven forecasting and fuzzy-SWOT analyses," Energy, Elsevier, vol. 259(C).
    19. Jamil, Rehan, 2020. "Hydroelectricity consumption forecast for Pakistan using ARIMA modeling and supply-demand analysis for the year 2030," Renewable Energy, Elsevier, vol. 154(C), pages 1-10.
    20. Ullah, Kafait & Raza, Muhammad Shabbar & Mirza, Faisal Mehmood, 2019. "Barriers to hydro-power resource utilization in Pakistan: A mixed approach," Energy Policy, Elsevier, vol. 132(C), pages 723-735.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:11:p:1858-:d:118630. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.