IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v106y2017icp525-535.html
   My bibliography  Save this article

Implementation of industrial waste heat to power in Southeast Asia: an outlook from the perspective of market potentials, opportunities and success catalysts

Author

Listed:
  • Zhang, Chuan
  • Romagnoli, Alessandro
  • Kim, Je Young
  • Azli, Anis Athirah Mohd
  • Rajoo, Srithar
  • Lindsay, Andrew

Abstract

As an important way to increase industrial energy efficiency, Waste Heat to Power (WHP) technologies have been gaining popularity in recent years. In order to appraise the market potential of WHP technologies in Southeast Asia, a techno-economic assessment for WHP technologies is conducted in this paper. The technical and economic market potential of WHP in Southeast Asia is estimated to be 1788MW and 1188MW respectively. The main market drivers and barriers for WHP market expansion in Southeast Asia are also analyzed. Given the fact that WHP is a far cheaper power generation technology as compared with traditional and renewable power generation, the WHP market is expected to increase fast in the coming years. Mounting electricity price from grid, government emissions regulations and subsidies, the integration of WHP products with original equipment manufacturer, capital cost reduction induced by technology development are identified as the key drivers for the market growth. The above arguments are proofed through the analysis of a power plant WHP project in Southeast Asia.

Suggested Citation

  • Zhang, Chuan & Romagnoli, Alessandro & Kim, Je Young & Azli, Anis Athirah Mohd & Rajoo, Srithar & Lindsay, Andrew, 2017. "Implementation of industrial waste heat to power in Southeast Asia: an outlook from the perspective of market potentials, opportunities and success catalysts," Energy Policy, Elsevier, vol. 106(C), pages 525-535.
  • Handle: RePEc:eee:enepol:v:106:y:2017:i:c:p:525-535
    DOI: 10.1016/j.enpol.2017.03.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421517301854
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.03.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Tianyou & Zhang, Yajun & Peng, Zhijun & Shu, Gequn, 2011. "A review of researches on thermal exhaust heat recovery with Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2862-2871, August.
    2. Yoo, Seung-Hoon & Kim, Yeonbae, 2006. "Electricity generation and economic growth in Indonesia," Energy, Elsevier, vol. 31(14), pages 2890-2899.
    3. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    4. Asafu-Adjaye, John, 2000. "The relationship between energy consumption, energy prices and economic growth: time series evidence from Asian developing countries," Energy Economics, Elsevier, vol. 22(6), pages 615-625, December.
    5. Peris, Bernardo & Navarro-Esbrí, Joaquín & Molés, Francisco & Mota-Babiloni, Adrián, 2015. "Experimental study of an ORC (organic Rankine cycle) for low grade waste heat recovery in a ceramic industry," Energy, Elsevier, vol. 85(C), pages 534-542.
    6. Fang, Hao & Xia, Jianjun & Zhu, Kan & Su, Yingbo & Jiang, Yi, 2013. "Industrial waste heat utilization for low temperature district heating," Energy Policy, Elsevier, vol. 62(C), pages 236-246.
    7. Sovacool, Benjamin K., 2009. "Energy policy and cooperation in Southeast Asia: The history, challenges, and implications of the trans-ASEAN gas pipeline (TAGP) network," Energy Policy, Elsevier, vol. 37(6), pages 2356-2367, June.
    8. Kardooni, Roozbeh & Yusoff, Sumiani Binti & Kari, Fatimah Binti, 2016. "Renewable energy technology acceptance in Peninsular Malaysia," Energy Policy, Elsevier, vol. 88(C), pages 1-10.
    9. Tongsopit, Sopitsuda & Kittner, Noah & Chang, Youngho & Aksornkij, Apinya & Wangjiraniran, Weerin, 2016. "Energy security in ASEAN: A quantitative approach for sustainable energy policy," Energy Policy, Elsevier, vol. 90(C), pages 60-72.
    10. Hung, T.C. & Shai, T.Y. & Wang, S.K., 1997. "A review of organic rankine cycles (ORCs) for the recovery of low-grade waste heat," Energy, Elsevier, vol. 22(7), pages 661-667.
    11. Nguyen, Khanh Q., 2008. "Impacts of a rise in electricity tariff on prices of other products in Vietnam," Energy Policy, Elsevier, vol. 36(8), pages 3135-3139, August.
    12. Ueckerdt, Falko & Hirth, Lion & Luderer, Gunnar & Edenhofer, Ottmar, 2013. "System LCOE: What are the costs of variable renewables?," Energy, Elsevier, vol. 63(C), pages 61-75.
    13. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    14. Lu, Hongyou & Price, Lynn & Zhang, Qi, 2016. "Capturing the invisible resource: Analysis of waste heat potential in Chinese industry," Applied Energy, Elsevier, vol. 161(C), pages 497-511.
    15. Saidur, R. & Rezaei, M. & Muzammil, W.K. & Hassan, M.H. & Paria, S. & Hasanuzzaman, M., 2012. "Technologies to recover exhaust heat from internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5649-5659.
    16. Oh, Tick Hui & Pang, Shen Yee & Chua, Shing Chyi, 2010. "Energy policy and alternative energy in Malaysia: Issues and challenges for sustainable growth," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1241-1252, May.
    17. Steven Chu & Arun Majumdar, 2012. "Opportunities and challenges for a sustainable energy future," Nature, Nature, vol. 488(7411), pages 294-303, August.
    18. Karellas, S. & Leontaritis, A.-D. & Panousis, G. & Bellos, E. & Kakaras, E., 2013. "Energetic and exergetic analysis of waste heat recovery systems in the cement industry," Energy, Elsevier, vol. 58(C), pages 147-156.
    19. Hsiao, Frank S.T. & Hsiao, Mei-Chu W., 2006. "FDI, exports, and GDP in East and Southeast Asia--Panel data versus time-series causality analyses," Journal of Asian Economics, Elsevier, vol. 17(6), pages 1082-1106, December.
    20. Chandran, V.G.R. & Sharma, Susan & Madhavan, Karunagaran, 2010. "Electricity consumption-growth nexus: The case of Malaysia," Energy Policy, Elsevier, vol. 38(1), pages 606-612, January.
    21. Xu, Gang & Huang, Shengwei & Yang, Yongping & Wu, Ying & Zhang, Kai & Xu, Cheng, 2013. "Techno-economic analysis and optimization of the heat recovery of utility boiler flue gas," Applied Energy, Elsevier, vol. 112(C), pages 907-917.
    22. Marbe, Âsa & Harvey, Simon & Berntsson, Thore, 2006. "Technical, environmental and economic analysis of co-firing of gasified biofuel in a natural gas combined cycle (NGCC) combined heat and power (CHP) plant," Energy, Elsevier, vol. 31(10), pages 1614-1631.
    23. Sovacool, Benjamin K., 2010. "A comparative analysis of renewable electricity support mechanisms for Southeast Asia," Energy, Elsevier, vol. 35(4), pages 1779-1793.
    24. Karki, Shankar K. & Mann, Michael D. & Salehfar, Hossein, 2005. "Energy and environment in the ASEAN: challenges and opportunities," Energy Policy, Elsevier, vol. 33(4), pages 499-509, March.
    25. Pacudan, Romeo & de Guzman, Elaine, 2002. "Impact of energy efficiency policy to productive efficiency of electricity distribution industry in the Philippines," Energy Economics, Elsevier, vol. 24(1), pages 41-54, January.
    26. Zhang, Hui & Wang, Hong & Zhu, Xun & Qiu, Yong-Jun & Li, Kai & Chen, Rong & Liao, Qiang, 2013. "A review of waste heat recovery technologies towards molten slag in steel industry," Applied Energy, Elsevier, vol. 112(C), pages 956-966.
    27. Bin Mamat, A.M.I. & Martinez-Botas, R.F. & Rajoo, S. & Romagnoli, A. & Petrovic, S., 2015. "Waste heat recovery using a novel high performance low pressure turbine for electric turbocompounding in downsized gasoline engines: Experimental and computational analysis," Energy, Elsevier, vol. 90(P1), pages 218-234.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiménez-Arreola, Manuel & Pili, Roberto & Wieland, Christoph & Romagnoli, Alessandro, 2018. "Analysis and comparison of dynamic behavior of heat exchangers for direct evaporation in ORC waste heat recovery applications from fluctuating sources," Applied Energy, Elsevier, vol. 216(C), pages 724-740.
    2. Couvreur, Kenny & Beyne, Wim & De Paepe, Michel & Lecompte, Steven, 2020. "Hot water storage for increased electricity production with organic Rankine cycle from intermittent residual heat sources in the steel industry," Energy, Elsevier, vol. 200(C).
    3. Siti Norasyiqin Abdul Latif & Meng Soon Chiong & Srithar Rajoo & Asako Takada & Yoon-Young Chun & Kiyotaka Tahara & Yasuyuki Ikegami, 2021. "The Trend and Status of Energy Resources and Greenhouse Gas Emissions in the Malaysia Power Generation Mix," Energies, MDPI, vol. 14(8), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chintala, Venkateswarlu & Kumar, Suresh & Pandey, Jitendra K., 2018. "A technical review on waste heat recovery from compression ignition engines using organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 493-509.
    2. Mondejar, M.E. & Andreasen, J.G. & Pierobon, L. & Larsen, U. & Thern, M. & Haglind, F., 2018. "A review of the use of organic Rankine cycle power systems for maritime applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 126-151.
    3. Xu, Bin & Rathod, Dhruvang & Yebi, Adamu & Filipi, Zoran & Onori, Simona & Hoffman, Mark, 2019. "A comprehensive review of organic rankine cycle waste heat recovery systems in heavy-duty diesel engine applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 145-170.
    4. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    5. Lee Lian Ivy-Yap & Hussain Ali Bekhet, 2015. "Examining the Feedback Response of Residential Electricity Consumption towards Changes in its Determinants: Evidence from Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 5(3), pages 772-781.
    6. Muhammad Shahbaz & Mete Feridun, 2012. "Electricity consumption and economic growth empirical evidence from Pakistan," Quality & Quantity: International Journal of Methodology, Springer, vol. 46(5), pages 1583-1599, August.
    7. Lee Lian Ivy-Yap & Hussain Ali Bekhet, 2016. "Modelling the causal linkages among residential electricity consumption, gross domestic product, price of electricity, price of electric appliances, population and foreign direct investment in Malaysi," International Journal of Energy Technology and Policy, Inderscience Enterprises Ltd, vol. 12(1), pages 41-59.
    8. Hamdi, Helmi & Sbia, Rashid & Shahbaz, Muhammad, 2014. "The nexus between electricity consumption and economic growth in Bahrain," Economic Modelling, Elsevier, vol. 38(C), pages 227-237.
    9. Zeb, K. & Ali, S.M. & Khan, B. & Mehmood, C.A. & Tareen, N. & Din, W. & Farid, U. & Haider, A., 2017. "A survey on waste heat recovery: Electric power generation and potential prospects within Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1142-1155.
    10. Chang, C.T. & Costa, M. & La Villetta, M. & Macaluso, A. & Piazzullo, D. & Vanoli, L., 2019. "Thermo-economic analyses of a Taiwanese combined CHP system fuelled with syngas from rice husk gasification," Energy, Elsevier, vol. 167(C), pages 766-780.
    11. Shahbaz, Muhammad & Lean, Hooi Hooi, 2012. "The dynamics of electricity consumption and economic growth: A revisit study of their causality in Pakistan," Energy, Elsevier, vol. 39(1), pages 146-153.
    12. Hussain Ali Bekhet & Nor Hamisham Harun, 2017. "Elasticity and Causality among Electricity Generation from Renewable Energy and Its Determinants in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 7(2), pages 202-216.
    13. Yang, Liu & Su, Zixiang, 2022. "An eco-friendly and efficient trigeneration system for dual-fuel marine engine considering heat storage and energy deployment," Energy, Elsevier, vol. 239(PA).
    14. Mat Nawi, Z. & Kamarudin, S.K. & Sheikh Abdullah, S.R. & Lam, S.S., 2019. "The potential of exhaust waste heat recovery (WHR) from marine diesel engines via organic rankine cycle," Energy, Elsevier, vol. 166(C), pages 17-31.
    15. Minyoung Yang & Jinsoo Kim, 2020. "Revisiting the Relation between Renewable Electricity and Economic Growth: A Renewable–Growth Hypothesis," Sustainability, MDPI, vol. 12(8), pages 1-22, April.
    16. Kardooni, Roozbeh & Yusoff, Sumiani Binti & Kari, Fatimah Binti & Moeenizadeh, Leila, 2018. "Public opinion on renewable energy technologies and climate change in Peninsular Malaysia," Renewable Energy, Elsevier, vol. 116(PA), pages 659-668.
    17. Eveloy, Valérie & Rodgers, Peter & Qiu, Linyue, 2016. "Performance investigation of a power, heating and seawater desalination poly-generation scheme in an off-shore oil field," Energy, Elsevier, vol. 98(C), pages 26-39.
    18. Chen, Ping-Yu & Chen, Sheng-Tung & Chen, Chi-Chung, 2012. "Energy consumption and economic growth—New evidence from meta analysis," Energy Policy, Elsevier, vol. 44(C), pages 245-255.
    19. Yılmaz, Alper, 2015. "Transcritical organic Rankine vapor compression refrigeration system for intercity bus air-conditioning using engine exhaust heat," Energy, Elsevier, vol. 82(C), pages 1047-1056.
    20. Siddique, Abu Raihan Mohammad & Mahmud, Shohel & Heyst, Bill Van, 2017. "A review of the state of the science on wearable thermoelectric power generators (TEGs) and their existing challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 730-744.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:106:y:2017:i:c:p:525-535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.