IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v112y2013icp956-966.html
   My bibliography  Save this article

A review of waste heat recovery technologies towards molten slag in steel industry

Author

Listed:
  • Zhang, Hui
  • Wang, Hong
  • Zhu, Xun
  • Qiu, Yong-Jun
  • Li, Kai
  • Chen, Rong
  • Liao, Qiang

Abstract

Molten slag exhausted with critically high temperature of about 1450–1550°C is a potential resource of energy and raw materials. Water quenching is a traditional heat recovery technology, which uses cold water to cool down slag so as to achieve the desired glassy by-products. However, this technology consumes a huge amount of water and fails to recover the sensible heat of slag. To save energy and reduce water consumption, some other heat recovery technologies have thus been proposed. Generally, current heat recovery technologies can be classified into physical and chemical methods. Regarding the physical methods, mechanical crushing, air blast and centrifugal granulating process, etc. are widely investigated. With respect to chemical methods, methane reforming reaction and coal gasification process, etc. are proposed. Unfortunately, all these methods cannot fulfill the sustainable requirement. This paper aims to review the proposed granulation and heat recovery technologies. Their working principle, current research status, challenges and future prospects are presented. The waste heat recovery and utilization technologies, which give consideration to both heat recovery rate and cooled slag particles with high quality and high additional value, will be a key to achieve sustainable development for the iron and steel industry.

Suggested Citation

  • Zhang, Hui & Wang, Hong & Zhu, Xun & Qiu, Yong-Jun & Li, Kai & Chen, Rong & Liao, Qiang, 2013. "A review of waste heat recovery technologies towards molten slag in steel industry," Applied Energy, Elsevier, vol. 112(C), pages 956-966.
  • Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:956-966
    DOI: 10.1016/j.apenergy.2013.02.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626191300127X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.02.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barati, M. & Esfahani, S. & Utigard, T.A., 2011. "Energy recovery from high temperature slags," Energy, Elsevier, vol. 36(9), pages 5440-5449.
    2. Editors The, 2007. "From the Editors," Basic Income Studies, De Gruyter, vol. 2(1), pages 1-5, June.
    3. Bisio, G., 1997. "Energy recovery from molten slag and exploitation of the recovered energy," Energy, Elsevier, vol. 22(5), pages 501-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Yongqi & Shen, Hongwei & Wang, Hao & Wang, Xidong & Zhang, Zuotai, 2014. "Experimental investigation and modeling of cooling processes of high temperature slags," Energy, Elsevier, vol. 76(C), pages 761-767.
    2. Yongqi Sun & Zuotai Zhang & Lili Liu & Xidong Wang, 2015. "Heat Recovery from High Temperature Slags: A Review of Chemical Methods," Energies, MDPI, vol. 8(3), pages 1-19, March.
    3. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    4. Tan, Yu & Wang, Hong & Zhu, Xun & Lv, Yi-Wen & Ding, Yu-Dong & Liao, Qiang, 2020. "Film fragmentation mode: The most suitable way for centrifugal granulation of large flow rate molten blast slag towards high-efficiency waste heat recovery for industrialization," Applied Energy, Elsevier, vol. 276(C).
    5. Mariusz Tańczuk & Maciej Masiukiewicz & Stanisław Anweiler & Robert Junga, 2018. "Technical Aspects and Energy Effects of Waste Heat Recovery from District Heating Boiler Slag," Energies, MDPI, vol. 11(4), pages 1-19, March.
    6. Wang, Hong & Wu, Jun-Jun & Zhu, Xun & Liao, Qiang & Zhao, Liang, 2016. "Energy–environment–economy evaluations of commercial scale systems for blast furnace slag treatment: Dry slag granulation vs. water quenching," Applied Energy, Elsevier, vol. 171(C), pages 314-324.
    7. Dawei Zhao & Zuotai Zhang & Xulong Tang & Lili Liu & Xidong Wang, 2014. "Preparation of Slag Wool by Integrated Waste-Heat Recovery and Resource Recycling of Molten Blast Furnace Slags: From Fundamental to Industrial Application," Energies, MDPI, vol. 7(5), pages 1-15, May.
    8. Yongqi Sun & Zuotai Zhang & Lili Liu & Xidong Wang, 2014. "Multi-Stage Control of Waste Heat Recovery from High Temperature Slags Based on Time Temperature Transformation Curves," Energies, MDPI, vol. 7(3), pages 1-12, March.
    9. Eloi Laurent, 2010. "Environmental justice and environmental inequalities: A European perspective," Working Papers hal-01069412, HAL.
    10. Sylvester Ngome Chisika & Chunho Yeom, 2021. "Enhancing Sustainable Management of Public Natural Forests Through Public Private Partnerships in Kenya," SAGE Open, , vol. 11(4), pages 21582440211, October.
    11. Laurent, Catherine E. & Berriet-Solliec, Marielle & Kirsch, Marc & Labarthe, Pierre & Trouve, Aurelie, 2010. "Multifunctionality Of Agriculture, Public Policies And Scientific Evidences: Some Critical Issues Of Contemporary Controversies," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 4(1-2), pages 1-6.
    12. Juan Carlos Conesa & Timothy J. Kehoe & Kim J. Ruhl, 2007. "Modeling great depressions: the depression in Finland in the 1990s," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 31(Nov), pages 16-44.
    13. Fabio Salamanca-Buentello & Mary V Seeman & Abdallah S Daar & Ross E G Upshur, 2020. "The ethical, social, and cultural dimensions of screening for mental health in children and adolescents of the developing world," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-25, August.
    14. Adilson Carlos Yoshikuni & José Eduardo Ricciardi Favaretto & Alberto Luiz Albertin & Fernando de Souza Meirelles, 2022. "How can Strategy-as-Practice Enable Innovation under the Influence of Environmental Dynamism?," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 26(1), pages 200131-2001.
    15. Paola Gatti & Chiara Ghislieri & Claudio G Cortese, 2017. "Relationships between followers’ behaviors and job satisfaction in a sample of nurses," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-16, October.
    16. Éloi Laurent, 2012. "Pour une justice environnementale européenne. Le cas de la précarité énergétique," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(1), pages 99-120.
    17. Peter Kuhn & Marie-Claire Villeval, 2011. "Do Women Prefer a Co-operative Work Environment?," Working Papers 1127, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    18. Premand, Patrick & Brodmann, Stefanie & Almeida, Rita & Grun, Rebekka & Barouni, Mahdi, 2016. "Entrepreneurship Education and Entry into Self-Employment Among University Graduates," World Development, Elsevier, vol. 77(C), pages 311-327.
    19. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    20. Lara Jehi & Xinge Ji & Alex Milinovich & Serpil Erzurum & Amy Merlino & Steve Gordon & James B Young & Michael W Kattan, 2020. "Development and validation of a model for individualized prediction of hospitalization risk in 4,536 patients with COVID-19," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:956-966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.