IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v87y2020ics0140988319302993.html
   My bibliography  Save this article

Coordinating technological progress and environmental regulation in CO2 mitigation: The optimal levels for OECD countries & emerging economies

Author

Listed:
  • Wang, Huiqing
  • Wei, Weixian

Abstract

As technological progress and environmental regulation are not only important drivers of but also the double-edged swords in mitigation of CO2 emissions, it is important to figure out their optimal threshold values for CO2 emissions' reduction. This paper employs the panel smooth transition regression technique to explore these optimal values in the case of OECD countries and emerging economies. The results show that: (1) OECD countries are at a level of excessive technological progress, which will have a rebound effect and increase CO2 emissions. (2) Emerging economies are under a strict level of environmental regulation, which will lead to serious ‘green paradox’ effects and harm the economic development. Moreover, they have great potential to achieve CO2 emissions reduction targets through technological progress. (3) Due to the rebound effect, the concentration of environment-related technologies should be shifted from improving energy efficiency to reducing carbon emissions directly such as capture, storage, sequestration or disposal of greenhouse gases. (4) OECD countries should provide low-carbon technical support to emerging economies. In addition, because of the existence of heterogeneity, OECD countries ought to determine their levels of technological progress and environmental regulation according to their own actual conditions.

Suggested Citation

  • Wang, Huiqing & Wei, Weixian, 2020. "Coordinating technological progress and environmental regulation in CO2 mitigation: The optimal levels for OECD countries & emerging economies," Energy Economics, Elsevier, vol. 87(C).
  • Handle: RePEc:eee:eneeco:v:87:y:2020:i:c:s0140988319302993
    DOI: 10.1016/j.eneco.2019.104510
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988319302993
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2019.104510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. González, Andrés & Teräsvirta, Timo & van Dijk, Dick & Yang, Yukai, 2005. "Panel Smooth Transition Regression Models," SSE/EFI Working Paper Series in Economics and Finance 604, Stockholm School of Economics, revised 11 Oct 2017.
    2. Gilbert Colletaz & Christophe Hurlin, 2006. "Threshold Effects in the Public Capital Productivity: an International Panel Smooth Transition Approach," Post-Print halshs-00257487, HAL.
    3. Gerlagh, Reyer & Lise, Wietze, 2005. "Carbon taxes: A drop in the ocean, or a drop that erodes the stone? The effect of carbon taxes on technological change," Ecological Economics, Elsevier, vol. 54(2-3), pages 241-260, August.
    4. Nachtigall, Daniel & Rübbelke, Dirk, 2016. "The green paradox and learning-by-doing in the renewable energy sector," Resource and Energy Economics, Elsevier, vol. 43(C), pages 74-92.
    5. Richard S.J. Tol, 2004. "An emission intensity protocol for climate change: an application of FUND," Climate Policy, Taylor & Francis Journals, vol. 4(3), pages 269-287, September.
    6. Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012. "Learning or lock-in: Optimal technology policies to support mitigation," Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
    7. Bessec, Marie & Fouquau, Julien, 2008. "The non-linear link between electricity consumption and temperature in Europe: A threshold panel approach," Energy Economics, Elsevier, vol. 30(5), pages 2705-2721, September.
    8. Reyer Gerlagh, 2011. "Too Much Oil," CESifo Economic Studies, CESifo Group, vol. 57(1), pages 79-102, March.
    9. Gene M. Grossman & Alan B. Krueger, 1995. "Economic Growth and the Environment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(2), pages 353-377.
    10. Tol, Richard S.J., 2013. "Targets for global climate policy: An overview," Journal of Economic Dynamics and Control, Elsevier, vol. 37(5), pages 911-928.
    11. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    12. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    13. A. Greening, Lorna & Greene, David L. & Difiglio, Carmen, 2000. "Energy efficiency and consumption -- the rebound effect -- a survey," Energy Policy, Elsevier, vol. 28(6-7), pages 389-401, June.
    14. Hans-Werner Sinn, 2008. "Public policies against global warming: a supply side approach," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 15(4), pages 360-394, August.
    15. Wen, Fenghua & Ye, Zhengke & Yang, Huaidong & Li, Ke, 2018. "Exploring the rebound effect from the perspective of household: An analysis of China's provincial level," Energy Economics, Elsevier, vol. 75(C), pages 345-356.
    16. Thomas Eichner & Rüdiger Pethig, 2011. "Carbon Leakage, The Green Paradox, And Perfect Future Markets," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(3), pages 767-805, August.
    17. Voigt, Sebastian & De Cian, Enrica & Schymura, Michael & Verdolini, Elena, 2014. "Energy intensity developments in 40 major economies: Structural change or technology improvement?," Energy Economics, Elsevier, vol. 41(C), pages 47-62.
    18. repec:dau:papers:123456789/8180 is not listed on IDEAS
    19. Po-Chin Wu & Chung-Chih Lee, 2018. "The non-linear impact of monetary policy on international reserves: macroeconomic variables nexus," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 45(1), pages 165-185, February.
    20. Sadorsky, Perry, 2010. "The impact of financial development on energy consumption in emerging economies," Energy Policy, Elsevier, vol. 38(5), pages 2528-2535, May.
    21. Hansen, Bruce E., 1999. "Threshold effects in non-dynamic panels: Estimation, testing, and inference," Journal of Econometrics, Elsevier, vol. 93(2), pages 345-368, December.
    22. Saunders, Harry D., 2008. "Fuel conserving (and using) production functions," Energy Economics, Elsevier, vol. 30(5), pages 2184-2235, September.
    23. Friedl, Birgit & Getzner, Michael, 2003. "Determinants of CO2 emissions in a small open economy," Ecological Economics, Elsevier, vol. 45(1), pages 133-148, April.
    24. van der Werf, Edwin & Di Maria, Corrado, 2012. "Imperfect Environmental Policy and Polluting Emissions: The Green Paradox and Beyond," International Review of Environmental and Resource Economics, now publishers, vol. 6(2), pages 153-194, March.
    25. Zhaohua Wang & Zhongmin Yang & Yixiang Zhang, 2012. "Relationships between energy technology patents and CO2 emissions in China: An empirical study," CEEP-BIT Working Papers 34, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    26. Muhammad Shahbaz & Mita Bhattacharya & Khalid Ahmed, 2017. "CO emissions in Australia: economic and non-economic drivers in the long-run," Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1273-1286, March.
    27. Hiroki Iwata & Keisuke Okada & Sovannroeun Samreth, 2012. "Empirical study on the determinants of CO 2 emissions: evidence from OECD countries," Applied Economics, Taylor & Francis Journals, vol. 44(27), pages 3513-3519, September.
    28. Michael Hoel, 2010. "Is there a Green Paradox?," CESifo Working Paper Series 3168, CESifo.
    29. Dinda, Soumyananda, 2011. "Carbon emission and production technology: evidence from the US," MPRA Paper 31935, University Library of Munich, Germany, revised 30 Jun 2011.
    30. Hela Namouri & Fredj Jawadi & Zied Ftiti & Néjib Hachicha, 2018. "Threshold effect in the relationship between investor sentiment and stock market returns: a PSTR specification," Applied Economics, Taylor & Francis Journals, vol. 50(5), pages 559-573, January.
    31. Magnani, Elisabetta, 2000. "The Environmental Kuznets Curve, environmental protection policy and income distribution," Ecological Economics, Elsevier, vol. 32(3), pages 431-443, March.
    32. Cole, Matthew A. & Elliott, Robert J.R. & Wu, Shanshan, 2008. "Industrial activity and the environment in China: An industry-level analysis," China Economic Review, Elsevier, vol. 19(3), pages 393-408, September.
    33. Bentzen, Jan, 2004. "Estimating the rebound effect in US manufacturing energy consumption," Energy Economics, Elsevier, vol. 26(1), pages 123-134, January.
    34. Roos, Inge & Soosaar, Sulev & Volkova, Anna & Streimikene, Dalia, 2012. "Greenhouse gas emission reduction perspectives in the Baltic States in frames of EU energy and climate policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2133-2146.
    35. Jansen, Eilev S & Terasvirta, Timo, 1996. "Testing Parameter Constancy and Super Exogeneity in Econometric Equations," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 735-763, November.
    36. Gene M. Grossman & Elhanan Helpman, 1993. "Innovation and Growth in the Global Economy," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262570971, December.
    37. Anne-Laure Delatte & Julien Fouquau, 2011. "The determinants of international reserves in the emerging countries: a nonlinear approach," Applied Economics, Taylor & Francis Journals, vol. 43(28), pages 4179-4192.
    38. Qiao-Mei Liang & Yi-Ming Wei, 2011. "Distributional impacts of taxing carbon in China: a general equilibrium analysis," CEEP-BIT Working Papers 29, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    39. Soytas, Ugur & Sari, Ramazan, 2003. "Energy consumption and GDP: causality relationship in G-7 countries and emerging markets," Energy Economics, Elsevier, vol. 25(1), pages 33-37, January.
    40. Ivan Haščič & Mauro Migotto, 2015. "Measuring environmental innovation using patent data," OECD Environment Working Papers 89, OECD Publishing.
    41. Binswanger, Mathias, 2001. "Technological progress and sustainable development: what about the rebound effect?," Ecological Economics, Elsevier, vol. 36(1), pages 119-132, January.
    42. Sadorsky, Perry, 2013. "Do urbanization and industrialization affect energy intensity in developing countries?," Energy Economics, Elsevier, vol. 37(C), pages 52-59.
    43. Grafton, R. Quentin & Kompas, Tom & Long, Ngo Van & To, Hang, 2014. "US biofuels subsidies and CO2 emissions: An empirical test for a weak and a strong green paradox," Energy Policy, Elsevier, vol. 68(C), pages 550-555.
    44. Nektarios Aslanidis & Susana Iranzo, 2009. "Environment and development: is there a Kuznets curve for CO2 emissions?," Applied Economics, Taylor & Francis Journals, vol. 41(6), pages 803-810.
    45. J. Daniel Khazzoom, 1980. "Economic Implications of Mandated Efficiency in Standards for Household Appliances," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 21-40.
    46. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207, Decembrie.
    47. Buonanno, Paolo & Carraro, Carlo & Galeotti, Marzio, 2003. "Endogenous induced technical change and the costs of Kyoto," Resource and Energy Economics, Elsevier, vol. 25(1), pages 11-34, February.
    48. Michael E. Porter & Claas van der Linde, 1995. "Toward a New Conception of the Environment-Competitiveness Relationship," Journal of Economic Perspectives, American Economic Association, vol. 9(4), pages 97-118, Fall.
    49. Mendelsohn, Robert, 1984. "Endogenous technical change and environmental regulation," Journal of Environmental Economics and Management, Elsevier, vol. 11(3), pages 202-207, September.
    50. Zhaohua Wang & Chao Feng, 2014. "The impact and economic cost of environmental regulation on energy utilization in China," Applied Economics, Taylor & Francis Journals, vol. 46(27), pages 3362-3376, September.
    51. Apergis, Nicholas, 2016. "Environmental Kuznets curves: New evidence on both panel and country-level CO2 emissions," Energy Economics, Elsevier, vol. 54(C), pages 263-271.
    52. R. Inglesi-Lotz & A. Hakimi & A. Pouris, 2018. "Patents vs publications and R&D: three sides of the same coin? Panel Smooth Transition Regression (PSTR) for OECD and BRICS countries," Applied Economics, Taylor & Francis Journals, vol. 50(45), pages 4912-4923, September.
    53. Antal, Miklós & van den Bergh, Jeroen C.J.M., 2014. "Re-spending rebound: A macro-level assessment for OECD countries and emerging economies," Energy Policy, Elsevier, vol. 68(C), pages 585-590.
    54. Berkhout, Peter H. G. & Muskens, Jos C. & W. Velthuijsen, Jan, 2000. "Defining the rebound effect," Energy Policy, Elsevier, vol. 28(6-7), pages 425-432, June.
    55. Xiaoping He & Xin Yao, 2017. "Foreign Direct Investments and the Environmental Kuznets Curve: New Evidence from Chinese Provinces," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 53(1), pages 12-25, January.
    56. Cansino, José M. & Román, Rocío & Ordóñez, Manuel, 2016. "Main drivers of changes in CO2 emissions in the Spanish economy: A structural decomposition analysis," Energy Policy, Elsevier, vol. 89(C), pages 150-159.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ben Lahouel, Béchir & Ben Zaied, Younes & Managi, Shunsuke & Taleb, Lotfi, 2022. "Re-thinking about U: The relevance of regime-switching model in the relationship between environmental corporate social responsibility and financial performance," Journal of Business Research, Elsevier, vol. 140(C), pages 498-519.
    2. Milin Lu & Zhaohua Wang, 2017. "Rebound effects for residential electricity use in urban China: an aggregation analysis based E-I-O and scenario simulation," Annals of Operations Research, Springer, vol. 255(1), pages 525-546, August.
    3. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    4. Xiaosheng Li & Xia Yan & Qingxian An & Ke Chen & Zhen Shen, 2016. "The coordination between China’s economic growth and environmental emission from the Environmental Kuznets Curve viewpoint," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 233-252, August.
    5. Wang, H. & Zhou, P. & Zhou, D.Q., 2012. "An empirical study of direct rebound effect for passenger transport in urban China," Energy Economics, Elsevier, vol. 34(2), pages 452-460.
    6. Saia, Artjom, 2023. "Digitalization and CO2 emissions: Dynamics under R&D and technology innovation regimes," Technology in Society, Elsevier, vol. 74(C).
    7. Jian Chai & Ting Liang & Xiaoyang Zhou & Yunxiao Ye & Limin Xing & Kin Keung Lai, 2016. "Natural Gas Consumption of Emerging Economies in the Industrialization Process," Sustainability, MDPI, vol. 8(11), pages 1-16, October.
    8. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2014. "Measuring energy efficiency and rebound effects using a stochastic demand frontier approach: the US residential energy demand," Efficiency Series Papers 2014/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    9. Wang, Zhaohua & Lu, Milin & Wang, Jian-Cai, 2014. "Direct rebound effect on urban residential electricity use: An empirical study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 124-132.
    10. Najm, Sarah & Matsumoto, Ken'ichi, 2020. "Does renewable energy substitute LNG international trade in the energy transition?," Energy Economics, Elsevier, vol. 92(C).
    11. Wang, Zhaohua & Han, Bai & Lu, Milin, 2016. "Measurement of energy rebound effect in households: Evidence from residential electricity consumption in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 852-861.
    12. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    13. Freire-González, Jaume, 2017. "Evidence of direct and indirect rebound effect in households in EU-27 countries," Energy Policy, Elsevier, vol. 102(C), pages 270-276.
    14. Frederick van der Ploeg, 2013. "Cumulative Carbon Emissions and the Green Paradox," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 281-300, June.
    15. Cansino, José M. & Román-Collado, Rocío & Merchán, José, 2019. "Do Spanish energy efficiency actions trigger JEVON’S paradox?," Energy, Elsevier, vol. 181(C), pages 760-770.
    16. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    17. Shahbaz, Muhammad & Haouas, Ilham & Hoang, Thi Hong Van, 2019. "Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture?," Emerging Markets Review, Elsevier, vol. 38(C), pages 197-218.
    18. Seleteng, Monaheng & Bittencourt, Manoel & van Eyden, Reneé, 2013. "Non-linearities in inflation–growth nexus in the SADC region: A panel smooth transition regression approach," Economic Modelling, Elsevier, vol. 30(C), pages 149-156.
    19. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2017. "Carbon Dioxide Emissions and Economic Growth: An Assessment Based on Production and Consumption Emission Inventories," Ecological Economics, Elsevier, vol. 135(C), pages 269-279.
    20. Lin, Boqiang & Chen, Yufang & Zhang, Guoliang, 2017. "Technological progress and rebound effect in China's nonferrous metals industry: An empirical study," Energy Policy, Elsevier, vol. 109(C), pages 520-529.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:87:y:2020:i:c:s0140988319302993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.