IDEAS home Printed from https://ideas.repec.org/a/eee/ecolec/v124y2016icp175-184.html
   My bibliography  Save this article

Political competition and renewable energy transitions over long time horizons: A dynamic approach

Author

Listed:
  • Dumas, Marion
  • Rising, James
  • Urpelainen, Johannes

Abstract

Climate change mitigation requires sustainable energy transitions, but their political dynamics are poorly understood. This article presents a general dynamic model of renewable energy policy with long time horizons, endogenous electoral competition, and techno-political path dependence. We calibrate the model with data on the economics of contemporary renewable energy technologies. In doing so, we discover transition dynamics not present in economy-energy models, which ignore politics, or in formal political economy models, which ignore long-term technological dynamics. We show that the largest effects of partisan ideology on policy occur when the competing parties disagree on the importance of energy policy. In these cases, the less ideological party appeases the more ideological one, while the more ideological party attempts to appease the electorate. The results demonstrate that political dynamics could have large effects on the development of renewable energy and carbon dioxide emissions over time, influencing the ability of countries to reach various climate mitigation trajectories.

Suggested Citation

  • Dumas, Marion & Rising, James & Urpelainen, Johannes, 2016. "Political competition and renewable energy transitions over long time horizons: A dynamic approach," Ecological Economics, Elsevier, vol. 124(C), pages 175-184.
  • Handle: RePEc:eee:ecolec:v:124:y:2016:i:c:p:175-184
    DOI: 10.1016/j.ecolecon.2016.01.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0921800916301288
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolecon.2016.01.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Unruh, Gregory C., 2002. "Escaping carbon lock-in," Energy Policy, Elsevier, vol. 30(4), pages 317-325, March.
    2. Dirk T.G. Rübbelke, 2002. "International Climate Policy to Combat Global Warming," Books, Edward Elgar Publishing, number 2723.
    3. Millner, Antony & Ollivier, Hélène & Simon, Leo, 2014. "Policy experimentation, political competition, and heterogeneous beliefs," Journal of Public Economics, Elsevier, vol. 120(C), pages 84-96.
    4. George Stigler, 1972. "Economic competition and political competition," Public Choice, Springer, vol. 13(1), pages 91-106, September.
    5. Brock, William & Engström, Gustav & Xepapadeas, Anastasios, 2014. "Spatial climate-economic models in the design of optimal climate policies across locations," European Economic Review, Elsevier, vol. 69(C), pages 78-103.
    6. Jens Großer & Thomas R. Palfrey, 2014. "Candidate Entry and Political Polarization: An Antimedian Voter Theorem," American Journal of Political Science, John Wiley & Sons, vol. 58(1), pages 127-143, January.
    7. John A. List & Daniel M. Sturm, 2006. "How Elections Matter: Theory and Evidence from Environmental Policy," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(4), pages 1249-1281.
    8. Gullberg, Anne Therese, 2008. "Lobbying friends and foes in climate policy: The case of business and environmental interest groups in the European Union," Energy Policy, Elsevier, vol. 36(8), pages 2954-2962, August.
    9. Jacobsson, Staffan & Lauber, Volkmar, 2006. "The politics and policy of energy system transformation--explaining the German diffusion of renewable energy technology," Energy Policy, Elsevier, vol. 34(3), pages 256-276, February.
    10. Timothy Besley & Torsten Persson & Daniel M. Sturm, 2010. "Political Competition, Policy and Growth: Theory and Evidence from the United States," CEP Discussion Papers dp1009, Centre for Economic Performance, LSE.
    11. Neumayer, Eric, 2003. "Are left-wing party strength and corporatism good for the environment? Evidence from panel analysis of air pollution in OECD countries," Ecological Economics, Elsevier, vol. 45(2), pages 203-220, June.
    12. Sanden, Bjorn A. & Azar, Christian, 2005. "Near-term technology policies for long-term climate targets--economy wide versus technology specific approaches," Energy Policy, Elsevier, vol. 33(12), pages 1557-1576, August.
    13. Anthony Downs, 1957. "An Economic Theory of Political Action in a Democracy," Journal of Political Economy, University of Chicago Press, vol. 65, pages 135-135.
    14. Andreoni, James, 1989. "Giving with Impure Altruism: Applications to Charity and Ricardian Equivalence," Journal of Political Economy, University of Chicago Press, vol. 97(6), pages 1447-1458, December.
    15. repec:hal:wpaper:hal-00860045 is not listed on IDEAS
    16. Andreoni, James, 1990. "Impure Altruism and Donations to Public Goods: A Theory of Warm-Glow Giving?," Economic Journal, Royal Economic Society, vol. 100(401), pages 464-477, June.
    17. Lipp, Judith, 2007. "Lessons for effective renewable electricity policy from Denmark, Germany and the United Kingdom," Energy Policy, Elsevier, vol. 35(11), pages 5481-5495, November.
    18. Malte Schwoon, 2006. "Simulating the adoption of fuel cell vehicles," Journal of Evolutionary Economics, Springer, vol. 16(4), pages 435-472, October.
    19. Lewis, Joanna I. & Wiser, Ryan H., 2007. "Fostering a renewable energy technology industry: An international comparison of wind industry policy support mechanisms," Energy Policy, Elsevier, vol. 35(3), pages 1844-1857, March.
    20. Andrew Cheon & Johannes Urpelainen, 2013. "How do Competing Interest Groups Influence Environmental Policy? The Case of Renewable Electricity in Industrialized Democracies, 1989–2007," Political Studies, Political Studies Association, vol. 61(4), pages 874-897, December.
    21. Michaël Aklin & Johannes Urpelainen, 2013. "Political Competition, Path Dependence, and the Strategy of Sustainable Energy Transitions," American Journal of Political Science, John Wiley & Sons, vol. 57(3), pages 643-658, July.
    22. Agnolucci, Paolo, 2008. "Factors influencing the likelihood of regulatory changes in renewable electricity policies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 141-161, January.
    23. Scott Barrett, 2009. "The Coming Global Climate-Technology Revolution," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 53-75, Spring.
    24. Schmidt, Robert C. & Marschinski, Robert, 2009. "A model of technological breakthrough in the renewable energy sector," Ecological Economics, Elsevier, vol. 69(2), pages 435-444, December.
    25. Rainer Walz, 2007. "The role of regulation for sustainable infrastructure innovations: the case of wind energy," International Journal of Public Policy, Inderscience Enterprises Ltd, vol. 2(1/2), pages 57-88.
    26. Jaffe, Adam B. & Newell, Richard G. & Stavins, Robert N., 2005. "A tale of two market failures: Technology and environmental policy," Ecological Economics, Elsevier, vol. 54(2-3), pages 164-174, August.
    27. Unruh, Gregory C., 2000. "Understanding carbon lock-in," Energy Policy, Elsevier, vol. 28(12), pages 817-830, October.
    28. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
    29. Ghisetti, Claudia & Quatraro, Francesco, 2013. "Beyond inducement in climate change: Does environmental performance spur environmental technologies? A regional analysis of cross-sectoral differences," Ecological Economics, Elsevier, vol. 96(C), pages 99-113.
    30. Timothy Besley & Torsten Persson & Daniel M. Sturm, 2010. "Political Competition, Policy and Growth: Theory and Evidence from the US," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 77(4), pages 1329-1352.
    31. Laird, Frank N. & Stefes, Christoph, 2009. "The diverging paths of German and United States policies for renewable energy: Sources of difference," Energy Policy, Elsevier, vol. 37(7), pages 2619-2629, July.
    32. Fuss, Sabine & Szolgayova, Jana & Obersteiner, Michael & Gusti, Mykola, 2008. "Investment under market and climate policy uncertainty," Applied Energy, Elsevier, vol. 85(8), pages 708-721, August.
    33. Malte Schwoon, 2005. "Simulating the Adoption of Fuel Cell Vehicles," Working Papers FNU-59, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2006.
    34. Tooraj Jamasb, 2007. "Technical Change Theory and Learning Curves: Patterns of Progress in Electricity Generation Technologies," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 51-72.
    35. Jon Hovi & Detlef F. Sprinz & Arild Underdal, 2009. "Implementing Long-Term Climate Policy: Time Inconsistency, Domestic Politics, International Anarchy," Global Environmental Politics, MIT Press, vol. 9(3), pages 20-39, August.
    36. McNerney, James & Doyne Farmer, J. & Trancik, Jessika E., 2011. "Historical costs of coal-fired electricity and implications for the future," Energy Policy, Elsevier, vol. 39(6), pages 3042-3054, June.
    37. Mitchell, C. & Bauknecht, D. & Connor, P.M., 2006. "Effectiveness through risk reduction: a comparison of the renewable obligation in England and Wales and the feed-in system in Germany," Energy Policy, Elsevier, vol. 34(3), pages 297-305, February.
    38. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    39. Pierson, Paul, 2000. "Increasing Returns, Path Dependence, and the Study of Politics," American Political Science Review, Cambridge University Press, vol. 94(2), pages 251-267, June.
    40. Verbong, Geert & Geels, Frank, 2007. "The ongoing energy transition: Lessons from a socio-technical, multi-level analysis of the Dutch electricity system (1960-2004)," Energy Policy, Elsevier, vol. 35(2), pages 1025-1037, February.
    41. Cornes, Richard & Sandler, Todd, 1994. "The comparative static properties of the impure public good model," Journal of Public Economics, Elsevier, vol. 54(3), pages 403-421, July.
    42. Rosenbloom, Daniel & Meadowcroft, James, 2014. "The journey towards decarbonization: Exploring socio-technical transitions in the electricity sector in the province of Ontario (1885–2013) and potential low-carbon pathways," Energy Policy, Elsevier, vol. 65(C), pages 670-679.
    43. Smith, Adrian & Kern, Florian & Raven, Rob & Verhees, Bram, 2014. "Spaces for sustainable innovation: Solar photovoltaic electricity in the UK," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 115-130.
    44. Paolo Zeppini & Jeroen C. J. M. van den Bergh, 2011. "Competing Recombinant Technologies for Environmental Innovation: Extending Arthur's Model of Lock-In," Industry and Innovation, Taylor & Francis Journals, vol. 18(3), pages 317-334.
    45. Shum, Kwok L. & Watanabe, Chihiro, 2007. "Photovoltaic deployment strategy in Japan and the USA--an institutional appraisal," Energy Policy, Elsevier, vol. 35(2), pages 1186-1195, February.
    46. Klaassen, Ger & Miketa, Asami & Larsen, Katarina & Sundqvist, Thomas, 2005. "The impact of R&D on innovation for wind energy in Denmark, Germany and the United Kingdom," Ecological Economics, Elsevier, vol. 54(2-3), pages 227-240, August.
    47. Kotchen, Matthew J. & Moore, Michael R., 2007. "Private provision of environmental public goods: Household participation in green-electricity programs," Journal of Environmental Economics and Management, Elsevier, vol. 53(1), pages 1-16, January.
    48. Aidt, Toke S., 1998. "Political internalization of economic externalities and environmental policy," Journal of Public Economics, Elsevier, vol. 69(1), pages 1-16, July.
    49. Costantini, Valeria & Mazzanti, Massimiliano & Montini, Anna, 2013. "Environmental performance, innovation and spillovers. Evidence from a regional NAMEA," Ecological Economics, Elsevier, vol. 89(C), pages 101-114.
    50. Claudia Ghisetti & Francesco Quatraro, 2013. "Beyond the Inducement in Climate Change: Do Environmental Performances Spur Enrivornmental Technologies? A Regional Analysis of Cross-Sectoral Differences," Working Papers 2013112, University of Ferrara, Department of Economics.
    51. Warwick J. McKibbin & Nouriel Roubini & Jeffrey Sachs, 1987. "Dynamic Optimization in Two-Party Models," NBER Working Papers 2213, National Bureau of Economic Research, Inc.
    52. Kelly Levin & Benjamin Cashore & Steven Bernstein & Graeme Auld, 2012. "Overcoming the tragedy of super wicked problems: constraining our future selves to ameliorate global climate change," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(2), pages 123-152, June.
    53. Claudia Ghisetti & Francesco Quatraro, 2013. "Beyond inducement in climate change: Does environmental performance spur environmental technologies?," Post-Print hal-00860045, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Meng & Su, Yun Hsuan & Zhao, Zhengtang & Mirza, Nawazish, 2023. "The politics of climate: Does factionalism impede U.S. carbon neutrality?," Economic Analysis and Policy, Elsevier, vol. 78(C), pages 954-966.
    2. Ryoko Nakano & Tomio Miwa & Takayuki Morikawa, 2019. "Factors Promoting Clean Energy in Japanese Cities: Nuclear Risks Versus Climate Change Risks," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    3. Lv, Zhike & Liu, Wangxin & Xu, Ting, 2022. "Evaluating the impact of information and communication technology on renewable energy consumption: A spatial econometric approach," Renewable Energy, Elsevier, vol. 189(C), pages 1-12.
    4. Wang, Delu & Li, Chunxiao & Mao, Jinqi & Yang, Qing, 2023. "What affects the implementation of the renewable portfolio standard? An analysis of the four-party evolutionary game," Renewable Energy, Elsevier, vol. 204(C), pages 250-261.
    5. Haichao Wang & Giulia Di Pietro & Xiaozhou Wu & Risto Lahdelma & Vittorio Verda & Ilkka Haavisto, 2018. "Renewable and Sustainable Energy Transitions for Countries with Different Climates and Renewable Energy Sources Potentials," Energies, MDPI, vol. 11(12), pages 1-32, December.
    6. Roberto Fazioli & Francesca Pantaleone, 2021. "Macroeconomic Factors Influencing Public Policy Strategies for Blue and Green Hydrogen," Energies, MDPI, vol. 14(23), pages 1-18, November.
    7. Roberto Fazioli & Francesca Pantaleone, 2021. "Macroeconomic factors influencing public policy strategies for Blue and Green Hydrogen," Working Papers 20210510, University of Ferrara, Department of Economics.
    8. Edler, Jakob & Köhler, Jonathan Hugh & Wydra, Sven & Salas-Gironés, Edgar & Schiller, Katharina & Braun, Annette, 2021. "Dimensions of systems and transformations: Towards an integrated framework for system transformations," Working Papers "Sustainability and Innovation" S03/2021, Fraunhofer Institute for Systems and Innovation Research (ISI).
    9. Wimhurst, Joshua J. & Greene, J. Scott & Koch, Jennifer, 2023. "Predicting commercial wind farm site suitability in the conterminous United States using a logistic regression model," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Cheon & Johannes Urpelainen, 2013. "How do Competing Interest Groups Influence Environmental Policy? The Case of Renewable Electricity in Industrialized Democracies, 1989–2007," Political Studies, Political Studies Association, vol. 61(4), pages 874-897, December.
    2. Schmidt, Tobias S. & Battke, Benedikt & Grosspietsch, David & Hoffmann, Volker H., 2016. "Do deployment policies pick technologies by (not) picking applications?—A simulation of investment decisions in technologies with multiple applications," Research Policy, Elsevier, vol. 45(10), pages 1965-1983.
    3. repec:hal:spmain:info:hdl:2441/f6h8764enu2lskk9p544jc8op is not listed on IDEAS
    4. Nicolli, Francesco & Vona, Francesco, 2019. "Energy market liberalization and renewable energy policies in OECD countries," Energy Policy, Elsevier, vol. 128(C), pages 853-867.
    5. Stokes, Leah C., 2013. "The politics of renewable energy policies: The case of feed-in tariffs in Ontario, Canada," Energy Policy, Elsevier, vol. 56(C), pages 490-500.
    6. Corradini, Massimiliano & Costantini, Valeria & Mancinelli, Susanna & Mazzanti, Massimiliano, 2014. "Unveiling the dynamic relation between R&D and emission abatement," Ecological Economics, Elsevier, vol. 102(C), pages 48-59.
    7. Paul Lehmann & Felix Creutzig & Melf-Hinrich Ehlers & Nele Friedrichsen & Clemens Heuson & Lion Hirth & Robert Pietzcker, 2012. "Carbon Lock-Out: Advancing Renewable Energy Policy in Europe," Energies, MDPI, vol. 5(2), pages 1-32, February.
    8. Aalbers, Rob & Shestalova, Victoria & Kocsis, Viktória, 2013. "Innovation policy for directing technical change in the power sector," Energy Policy, Elsevier, vol. 63(C), pages 1240-1250.
    9. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    10. Matthew Lockwood & Caroline Kuzemko & Catherine Mitchell & Richard Hoggett, 2017. "Historical institutionalism and the politics of sustainable energy transitions: A research agenda," Environment and Planning C, , vol. 35(2), pages 312-333, March.
    11. Gianluca ORSATTI, 2019. "Public R&D and green knowledge diffusion:\r\nEvidence from patent citation data," Cahiers du GREThA (2007-2019) 2019-17, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
    12. Rob Aalbers & Victoria Shestalova & Viktoria Kocsis, 2012. "Innovation policy for directing technical change in the power sector," CPB Discussion Paper 223, CPB Netherlands Bureau for Economic Policy Analysis.
    13. Polzin, Friedemann, 2017. "Mobilizing private finance for low-carbon innovation – A systematic review of barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 525-535.
    14. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    15. Cecere, Grazia & Mancinelli, Susanna & Mazzanti, Massimiliano, 2014. "Waste prevention and social preferences: the role of intrinsic and extrinsic motivations," Ecological Economics, Elsevier, vol. 107(C), pages 163-176.
    16. Valeria Costantini & Francesco Crespi, 2013. "Public policies for a sustainable energy sector: regulation, diversity and fostering of innovation," Journal of Evolutionary Economics, Springer, vol. 23(2), pages 401-429, April.
    17. Wüstenhagen, Rolf & Menichetti, Emanuela, 2012. "Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research," Energy Policy, Elsevier, vol. 40(C), pages 1-10.
    18. Pablo Del Río, 2010. "Climate Change Policies and New Technologies," Chapters, in: Emilio Cerdá Tena & Xavier Labandeira (ed.), Climate Change Policies, chapter 5, Edward Elgar Publishing.
    19. Quatraro, Francesco & Scandura, Alessandra, 2019. "Academic Inventors and the Antecedents of Green Technologies. A Regional Analysis of Italian Patent Data," Ecological Economics, Elsevier, vol. 156(C), pages 247-263.
    20. Yu, C.F. & van Sark, W.G.J.H.M. & Alsema, E.A., 2011. "Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 324-337, January.
    21. Anil Markandya & Dirk T.G. Rübbelke, 2012. "Impure public technologies and environmental policy," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 39(2), pages 128-143, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolec:v:124:y:2016:i:c:p:175-184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolecon .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.