IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v184y2016icp438-449.html
   My bibliography  Save this article

A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach

Author

Listed:
  • Lee, Yongseung
  • Kim, Chongman
  • Shin, Juneseuk

Abstract

HEV market penetration exists in a circular loop of purchase, use, retirement, and repurchase, i.e., the consumer ownership cycle. Existing HEV market penetration models focus on a single linear process, such as purchasing, without considering other processes. Market penetration policies based on such models can facilitate a single process, but they cannot boost market penetration as planned. Combining system dynamics with consumer choice models, we propose a new HEV market penetration model to describe the dynamic circular market penetration process as well as its interaction with macroeconomic conditions and government policies. In this way, our model finds bottlenecks, estimates the future effects of different policies to solve bottlenecks, and identifies more effective combinations of policies to boost HEV market penetration. Our empirical analysis of Korean HEV market penetration reveals that combining a tax incentive and retirement subsidy will be more effective than offering either of those alone. Also, HEV market penetration becomes slower when the tax incentive is smaller than the retirement subsidy (or vice versa) because consumers escape the market penetration loop.

Suggested Citation

  • Lee, Yongseung & Kim, Chongman & Shin, Juneseuk, 2016. "A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach," Applied Energy, Elsevier, vol. 184(C), pages 438-449.
  • Handle: RePEc:eee:appene:v:184:y:2016:i:c:p:438-449
    DOI: 10.1016/j.apenergy.2016.10.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916314787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.10.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kavalec, Chris & Setiawan, Winardi, 1997. "An analysis of accelerated vehicle retirement programs using a discrete choice personal vehicle model," Transport Policy, Elsevier, vol. 4(2), pages 95-107, April.
    2. Al-Alawi, Baha M. & Bradley, Thomas H., 2014. "Analysis of corporate average fuel economy regulation compliance scenarios inclusive of plug in hybrid vehicles," Applied Energy, Elsevier, vol. 113(C), pages 1323-1337.
    3. Jeroen Struben & John D Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Environment and Planning B, , vol. 35(6), pages 1070-1097, December.
    4. David L. Greene & K.G. Duleep & Walter McManus, 2004. "Future Potential of Hybrid and Diesel Powertrains in the U.S. Light-Duty Vehicle Market," Industrial Organization 0410003, University Library of Munich, Germany.
    5. Kenneth E. Train & Clifford Winston, 2007. "Vehicle Choice Behavior And The Declining Market Share Of U.S. Automakers," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1469-1496, November.
    6. Hao, Han & Wang, Hewu & Yi, Ran, 2011. "Hybrid modeling of China’s vehicle ownership and projection through 2050," Energy, Elsevier, vol. 36(2), pages 1351-1361.
    7. Björnsson, Lars-Henrik & Karlsson, Sten, 2015. "Plug-in hybrid electric vehicles: How individual movement patterns affect battery requirements, the potential to replace conventional fuels, and economic viability," Applied Energy, Elsevier, vol. 143(C), pages 336-347.
    8. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    9. González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2014. "Techno-economic assessment of lightweight and zero emission vehicles deployment in the passenger car fleet of developing countries," Applied Energy, Elsevier, vol. 123(C), pages 129-142.
    10. Brand, Christian & Anable, Jillian & Tran, Martino, 2013. "Accelerating the transformation to a low carbon passenger transport system: The role of car purchase taxes, feebates, road taxes and scrappage incentives in the UK," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 132-148.
    11. Stepp, Matthew D. & Winebrake, James J. & Hawker, J. Scott & Skerlos, Steven J., 2009. "Greenhouse gas mitigation policies and the transportation sector: The role of feedback effects on policy effectiveness," Energy Policy, Elsevier, vol. 37(7), pages 2774-2787, July.
    12. Dijk, Marc & Orsato, Renato J. & Kemp, René, 2013. "The emergence of an electric mobility trajectory," Energy Policy, Elsevier, vol. 52(C), pages 135-145.
    13. BenDor, Todd & Ford, Andrew, 2006. "Simulating a combination of feebates and scrappage incentives to reduce automobile emissions," Energy, Elsevier, vol. 31(8), pages 1197-1214.
    14. Yeh, Sonia, 2007. "An empirical analysis on the adoption of alternative fuel vehicles: The case of natural gas vehicles," Energy Policy, Elsevier, vol. 35(11), pages 5865-5875, November.
    15. Gallagher, Kelly Sims & Muehlegger, Erich, 2011. "Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 1-15, January.
    16. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Total cost of ownership, payback, and consumer preference modeling of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 103(C), pages 488-506.
    17. Wu, Geng & Inderbitzin, Alessandro & Bening, Catharina, 2015. "Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments," Energy Policy, Elsevier, vol. 80(C), pages 196-214.
    18. Berkovec, James, 1985. "Forecasting automobile demand using disaggregate choice models," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 315-329, August.
    19. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    20. Eppstein, Margaret J. & Grover, David K. & Marshall, Jeffrey S. & Rizzo, Donna M., 2011. "An agent-based model to study market penetration of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 39(6), pages 3789-3802, June.
    21. Ruan, Jiageng & Walker, Paul & Zhang, Nong, 2016. "A comparative study energy consumption and costs of battery electric vehicle transmissions," Applied Energy, Elsevier, vol. 165(C), pages 119-134.
    22. Torres, J.L. & Gonzalez, R. & Gimenez, A. & Lopez, J., 2014. "Energy management strategy for plug-in hybrid electric vehicles. A comparative study," Applied Energy, Elsevier, vol. 113(C), pages 816-824.
    23. Burke, Paul J. & Nishitateno, Shuhei, 2013. "Gasoline prices, gasoline consumption, and new-vehicle fuel economy: Evidence for a large sample of countries," Energy Economics, Elsevier, vol. 36(C), pages 363-370.
    24. Karplus, Valerie J. & Paltsev, Sergey & Reilly, John M., 2010. "Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general equilibrium analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(8), pages 620-641, October.
    25. Nienhueser, Ian Andrew & Qiu, Yueming, 2016. "Economic and environmental impacts of providing renewable energy for electric vehicle charging – A choice experiment study," Applied Energy, Elsevier, vol. 180(C), pages 256-268.
    26. Jeroen Struben & John D. Sterman, 2008. "Transition Challenges for Alternative Fuel Vehicle and Transportation Systems," Post-Print hal-02312277, HAL.
    27. Safaei Mohamadabadi, H. & Tichkowsky, G. & Kumar, A., 2009. "Development of a multi-criteria assessment model for ranking of renewable and non-renewable transportation fuel vehicles," Energy, Elsevier, vol. 34(1), pages 112-125.
    28. Pablo Gilabert & Holly Lawford-Smith, 2012. "Political Feasibility: A Conceptual Exploration," Political Studies, Political Studies Association, vol. 60(4), pages 809-825, December.
    29. Ferrero, Enrico & Alessandrini, Stefano & Balanzino, Alessia, 2016. "Impact of the electric vehicles on the air pollution from a highway," Applied Energy, Elsevier, vol. 169(C), pages 450-459.
    30. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    31. Kloess, Maximilian & Müller, Andreas, 2011. "Simulating the impact of policy, energy prices and technological progress on the passenger car fleet in Austria--A model based analysis 2010-2050," Energy Policy, Elsevier, vol. 39(9), pages 5045-5062, September.
    32. Higgins, Andrew & Paevere, Phillip & Gardner, John & Quezada, George, 2012. "Combining choice modelling and multi-criteria analysis for technology diffusion: An application to the uptake of electric vehicles," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1399-1412.
    33. Berkovec, James & Rust, John, 1985. "A nested logit model of automobile holdings for one vehicle households," Transportation Research Part B: Methodological, Elsevier, vol. 19(4), pages 275-285, August.
    34. Park, Sang Yong & Kim, Jong Wook & Lee, Duk Hee, 2011. "Development of a market penetration forecasting model for Hydrogen Fuel Cell Vehicles considering infrastructure and cost reduction effects," Energy Policy, Elsevier, vol. 39(6), pages 3307-3315, June.
    35. Diamond, David, 2009. "The impact of government incentives for hybrid-electric vehicles: Evidence from US states," Energy Policy, Elsevier, vol. 37(3), pages 972-983, March.
    36. Andrenacci, N. & Ragona, R. & Valenti, G., 2016. "A demand-side approach to the optimal deployment of electric vehicle charging stations in metropolitan areas," Applied Energy, Elsevier, vol. 182(C), pages 39-46.
    37. Saarenpää, Jukka & Kolehmainen, Mikko & Niska, Harri, 2013. "Geodemographic analysis and estimation of early plug-in hybrid electric vehicle adoption," Applied Energy, Elsevier, vol. 107(C), pages 456-464.
    38. Diao, Qinghua & Sun, Wei & Yuan, Xinmei & Li, Lili & Zheng, Zhi, 2016. "Life-cycle private-cost-based competitiveness analysis of electric vehicles in China considering the intangible cost of traffic policies," Applied Energy, Elsevier, vol. 178(C), pages 567-578.
    39. Yáñez, M.F. & Raveau, S. & Ortúzar, J. de D., 2010. "Inclusion of latent variables in Mixed Logit models: Modelling and forecasting," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 744-753, November.
    40. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Qin & Wen, Xiaonan & Cao, Qinwei, 2023. "Multi-objective development path evolution of new energy vehicle policy driven by big data: From the perspective of economic-ecological-social," Applied Energy, Elsevier, vol. 341(C).
    2. Hongxia Sun & Yao Wan & Huirong Lv, 2020. "System Dynamics Model for the Evolutionary Behaviour of Government Enterprises and Consumers in China’s New Energy Vehicle Market," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    3. Lu, Tianguang & Ai, Qian & Wang, Zhaoyu, 2018. "Interactive game vector: A stochastic operation-based pricing mechanism for smart energy systems with coupled-microgrids," Applied Energy, Elsevier, vol. 212(C), pages 1462-1475.
    4. González Palencia, Juan C. & Otsuka, Yuki & Araki, Mikiya & Shiga, Seiichi, 2017. "Scenario analysis of lightweight and electric-drive vehicle market penetration in the long-term and impact on the light-duty vehicle fleet," Applied Energy, Elsevier, vol. 204(C), pages 1444-1462.
    5. Kong, Deyang & Xia, Quhong & Xue, Yixi & Zhao, Xin, 2020. "Effects of multi policies on electric vehicle diffusion under subsidy policy abolishment in China: A multi-actor perspective," Applied Energy, Elsevier, vol. 266(C).
    6. Zhu, Lijing & Wang, Peize & Zhang, Qi, 2019. "Indirect network effects in China’s electric vehicle diffusion under phasing out subsidies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Yan, Shiyu, 2018. "The economic and environmental impacts of tax incentives for battery electric vehicles in Europe," Energy Policy, Elsevier, vol. 123(C), pages 53-63.
    8. Nie, Qingyun & Zhang, Lihui & Li, Songrui, 2022. "How can personal carbon trading be applied in electric vehicle subsidies? A Stackelberg game method in private vehicles," Applied Energy, Elsevier, vol. 313(C).
    9. Hao, Xu & Lin, Zhenhong & Wang, Hewu & Ou, Shiqi & Ouyang, Minggao, 2020. "Range cost-effectiveness of plug-in electric vehicle for heterogeneous consumers: An expanded total ownership cost approach," Applied Energy, Elsevier, vol. 275(C).
    10. Shen, Yung-Shuen & Huang, Guan-Ting & Chang-Chien, Chien-Li & Huang, Lance Hongwei & Kuo, Chien-Hung & Hu, Allen H., 2023. "The impact of passenger electric vehicles on carbon reduction and environmental impact under the 2050 net zero policy in Taiwan," Energy Policy, Elsevier, vol. 183(C).
    11. Umberto Previti & Sebastian Brusca & Antonio Galvagno & Fabio Famoso, 2022. "Influence of Energy Management System Control Strategies on the Battery State of Health in Hybrid Electric Vehicles," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    12. Qiu, Y.Q. & Tsan Sheng Ng, Adam & Zhou, P., 2022. "Optimizing urban electric vehicle incentive policy mixes in China: Perspective of residential preference heterogeneity," Applied Energy, Elsevier, vol. 313(C).
    13. Liu, Dunnan & Xiao, Bowen, 2018. "Exploring the development of electric vehicles under policy incentives: A scenario-based system dynamics model," Energy Policy, Elsevier, vol. 120(C), pages 8-23.
    14. Yao, Xusheng & Ma, Shoufeng & Bai, Yin & Jia, Ning, 2022. "When are new energy vehicle incentives effective? Empirical evidence from 88 pilot cities in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 207-224.
    15. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
    16. Ye, Rui-Ke & Gao, Zhuang-Fei & Fang, Kai & Liu, Kang-Li & Chen, Jia-Wei, 2021. "Moving from subsidy stimulation to endogenous development: A system dynamics analysis of China's NEVs in the post-subsidy era," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    17. Eunil Park & Jooyoung Lim & Yongwoo Cho, 2018. "Understanding the Emergence and Social Acceptance of Electric Vehicles as Next-Generation Models for the Automobile Industry," Sustainability, MDPI, vol. 10(3), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    2. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    3. Harrison, Gillian & Thiel, Christian, 2017. "An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 165-178.
    4. Sierzchula, William & Bakker, Sjoerd & Maat, Kees & van Wee, Bert, 2014. "The influence of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy, Elsevier, vol. 68(C), pages 183-194.
    5. Xiaoxue Zheng & Haiyan Lin & Zhi Liu & Dengfeng Li & Carlos Llopis-Albert & Shouzhen Zeng, 2018. "Manufacturing Decisions and Government Subsidies for Electric Vehicles in China: A Maximal Social Welfare Perspective," Sustainability, MDPI, vol. 10(3), pages 1-28, March.
    6. Zhang, Qi & Li, Hailong & Zhu, Lijing & Campana, Pietro Elia & Lu, Huihui & Wallin, Fredrik & Sun, Qie, 2018. "Factors influencing the economics of public charging infrastructures for EV – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 500-509.
    7. Petschnig, Martin & Heidenreich, Sven & Spieth, Patrick, 2014. "Innovative alternatives take action – Investigating determinants of alternative fuel vehicle adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 68-83.
    8. Mohammadreza Zolfagharian & Bob Walrave & A. Georges L. Romme & Rob Raven, 2020. "Toward the Dynamic Modeling of Transition Problems: The Case of Electric Mobility," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    9. Daziano, Ricardo A. & Chiew, Esther, 2012. "Electric vehicles rising from the dead: Data needs for forecasting consumer response toward sustainable energy sources in personal transportation," Energy Policy, Elsevier, vol. 51(C), pages 876-894.
    10. Sun, Xiaohua & Liu, Xiaoling & Wang, Yun & Yuan, Fang, 2019. "The effects of public subsidies on emerging industry: An agent-based model of the electric vehicle industry," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 281-295.
    11. Al-Alawi, Baha M. & Coker, Alexander D., 2018. "Multi-criteria decision support system with negotiation process for vehicle technology selection," Energy, Elsevier, vol. 157(C), pages 278-296.
    12. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
    13. Shepherd, Simon & Bonsall, Peter & Harrison, Gillian, 2012. "Factors affecting future demand for electric vehicles: A model based study," Transport Policy, Elsevier, vol. 20(C), pages 62-74.
    14. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    15. Karsten Kieckhäfer & Thomas Volling & Thomas Stefan Spengler, 2014. "A Hybrid Simulation Approach for Estimating the Market Share Evolution of Electric Vehicles," Transportation Science, INFORMS, vol. 48(4), pages 651-670, November.
    16. Gómez Vilchez, Jonatan J. & Jochem, Patrick, 2019. "Simulating vehicle fleet composition: A review of system dynamics models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Dumortier, Jerome & Siddiki, Saba & Carley, Sanya & Cisney, Joshua & Krause, Rachel M. & Lane, Bradley W. & Rupp, John A. & Graham, John D., 2015. "Effects of providing total cost of ownership information on consumers’ intent to purchase a hybrid or plug-in electric vehicle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 72(C), pages 71-86.
    18. Li, Xiaomin & Chen, Pu & Wang, Xingwu, 2017. "Impacts of renewables and socioeconomic factors on electric vehicle demands – Panel data studies across 14 countries," Energy Policy, Elsevier, vol. 109(C), pages 473-478.
    19. Soares, N. & Martins, A.G. & Carvalho, A.L. & Caldeira, C. & Du, C. & Castanheira, É. & Rodrigues, E. & Oliveira, G. & Pereira, G.I. & Bastos, J. & Ferreira, J.P. & Ribeiro, L.A. & Figueiredo, N.C. & , 2018. "The challenging paradigm of interrelated energy systems towards a more sustainable future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 171-193.
    20. Javid, Roxana J. & Nejat, Ali, 2017. "A comprehensive model of regional electric vehicle adoption and penetration," Transport Policy, Elsevier, vol. 54(C), pages 30-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:184:y:2016:i:c:p:438-449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.