IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v123y2014icp129-142.html
   My bibliography  Save this article

Techno-economic assessment of lightweight and zero emission vehicles deployment in the passenger car fleet of developing countries

Author

Listed:
  • González Palencia, Juan C.
  • Furubayashi, Takaaki
  • Nakata, Toshihiko

Abstract

The largest increment in the global light-duty vehicle fleet in the medium- and long-term will happen in developing countries. Advanced vehicles can outweigh increments in CO2 emissions of a growing vehicle fleet; however, cost remains a barrier for their diffusion. A stock turnover model of the passenger car fleet was developed to estimate the potential of advanced vehicle deployment for CO2 emissions reduction, and used in the case of Colombia. Vehicle types included internal combustion engine vehicles (ICEVs), battery electric vehicles (BEVs) and fuel cell hybrid electric vehicles (FCHEVs); using two glider types: conventional and lightweight materials-intensive. Five scenarios were considered: the base scenario that relies on conventional ICEVs, and four alternative scenarios targeting the penetration of (A) BEVs, (B) BEVs and lightweight vehicles, (C) FCHEVs, and (D) FCHEVs and lightweight vehicles. Deployment of BEVs and lightweight vehicles offers the largest cumulative well-to-wheel CO2 emissions reductions, 22.01% compared to the base scenario; with cost of avoided CO2 going from 930USD/t-CO2 avoided in 2020 to 31USD/t-CO2 avoided in 2050. Despite advanced vehicle deployment, gasoline will be the main fuel and iron and steel the main materials until 2050 in the Colombian passenger car fleet.

Suggested Citation

  • González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2014. "Techno-economic assessment of lightweight and zero emission vehicles deployment in the passenger car fleet of developing countries," Applied Energy, Elsevier, vol. 123(C), pages 129-142.
  • Handle: RePEc:eee:appene:v:123:y:2014:i:c:p:129-142
    DOI: 10.1016/j.apenergy.2014.02.059
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914002049
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.02.059?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Yongling & Ogden, J & Delucchi, Mark, 2010. "Societal lifetime cost of hydrogen fuel cell vehicles," Institute of Transportation Studies, Working Paper Series qt2fm762sz, Institute of Transportation Studies, UC Davis.
    2. Lynette Cheah & John Heywood & Randolph Kirchain, 2009. "Aluminum Stock and Flows in U.S. Passenger Vehicles and Implications for Energy Use," Journal of Industrial Ecology, Yale University, vol. 13(5), pages 718-734, October.
    3. Pasaoglu, Guzay & Honselaar, Michel & Thiel, Christian, 2012. "Potential vehicle fleet CO2 reductions and cost implications for various vehicle technology deployment scenarios in Europe," Energy Policy, Elsevier, vol. 40(C), pages 404-421.
    4. Fulton, Lew & Cazzola, Pierpaolo & Cuenot, François, 2009. "IEA Mobility Model (MoMo) and its use in the ETP 2008," Energy Policy, Elsevier, vol. 37(10), pages 3758-3768, October.
    5. Joyce Dargay & Dermot Gately & Martin Sommer, 2007. "Vehicle Ownership and Income Growth, Worldwide: 1960-2030," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 143-170.
    6. Du, J.D. & Han, W.J. & Peng, Y.H. & Gu, C.C., 2010. "Potential for reducing GHG emissions and energy consumption from implementing the aluminum intensive vehicle fleet in China," Energy, Elsevier, vol. 35(12), pages 4671-4678.
    7. Hao, Han & Wang, Hewu & Ouyang, Minggao, 2011. "Fuel conservation and GHG (Greenhouse gas) emissions mitigation scenarios for China’s passenger vehicle fleet," Energy, Elsevier, vol. 36(11), pages 6520-6528.
    8. Offer, G.J. & Contestabile, M. & Howey, D.A. & Clague, R. & Brandon, N.P., 2011. "Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK," Energy Policy, Elsevier, vol. 39(4), pages 1939-1950, April.
    9. Offer, G.J. & Howey, D. & Contestabile, M. & Clague, R. & Brandon, N.P., 2010. "Comparative analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system," Energy Policy, Elsevier, vol. 38(1), pages 24-29, January.
    10. González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2012. "Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials," Energy, Elsevier, vol. 48(1), pages 548-565.
    11. Kloess, Maximilian & Müller, Andreas, 2011. "Simulating the impact of policy, energy prices and technological progress on the passenger car fleet in Austria--A model based analysis 2010-2050," Energy Policy, Elsevier, vol. 39(9), pages 5045-5062, September.
    12. Delucchi, Mark & Burke, Andy & Lipman, Timothy & Miller, Marshall, 2000. "Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model," Institute of Transportation Studies, Working Paper Series qt1np1h2zp, Institute of Transportation Studies, UC Davis.
    13. Thiel, Christian & Perujo, Adolfo & Mercier, Arnaud, 2010. "Cost and CO2 aspects of future vehicle options in Europe under new energy policy scenarios," Energy Policy, Elsevier, vol. 38(11), pages 7142-7151, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Donateo, T. & Licci, F. & D’Elia, A. & Colangelo, G. & Laforgia, D. & Ciancarelli, F., 2015. "Evaluation of emissions of CO2 and air pollutants from electric vehicles in Italian cities," Applied Energy, Elsevier, vol. 157(C), pages 675-687.
    2. Lee, Yongseung & Kim, Chongman & Shin, Juneseuk, 2016. "A hybrid electric vehicle market penetration model to identify the best policy mix: A consumer ownership cycle approach," Applied Energy, Elsevier, vol. 184(C), pages 438-449.
    3. González Palencia, Juan C. & Araki, Mikiya & Shiga, Seiichi, 2016. "Energy, environmental and economic impact of mini-sized and zero-emission vehicle diffusion on a light-duty vehicle fleet," Applied Energy, Elsevier, vol. 181(C), pages 96-109.
    4. Ewelina Sendek-Matysiak & Dariusz Pyza & Zbigniew Łosiewicz & Wojciech Lewicki, 2022. "Total Cost of Ownership of Light Commercial Electrical Vehicles in City Logistics," Energies, MDPI, vol. 15(22), pages 1-23, November.
    5. Hao, Han & Geng, Yong & Hang, Wen, 2016. "GHG emissions from primary aluminum production in China: Regional disparity and policy implications," Applied Energy, Elsevier, vol. 166(C), pages 264-272.
    6. Dorina Pojani & Dominic Stead, 2015. "Sustainable Urban Transport in the Developing World: Beyond Megacities," Sustainability, MDPI, vol. 7(6), pages 1-22, June.
    7. Jingjing Jia & Shujie Ma & Yixi Xue & Deyang Kong, 2020. "Life-Cycle Break-Even Analysis of Electric Carsharing: A Comparative Study in China," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
    8. van Velzen, Arjan & Annema, Jan Anne & van de Kaa, Geerten & van Wee, Bert, 2019. "Proposing a more comprehensive future total cost of ownership estimation framework for electric vehicles," Energy Policy, Elsevier, vol. 129(C), pages 1034-1046.
    9. Mahdi Salehi & Seyed Hamed Fahimifard & Grzegorz Zimon & Andrzej Bujak & Adam Sadowski, 2022. "The Effect of CO 2 Gas Emissions on the Market Value, Price and Shares Returns," Energies, MDPI, vol. 15(23), pages 1-17, December.
    10. M. AlSabbagh & Y. L. Siu & A. Guehnemann & J. Barrett, 2017. "Mitigation of CO2 emissions from the road passenger transport sector in Bahrain," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(1), pages 99-119, January.
    11. González Palencia, Juan C. & Sakamaki, Tsukasa & Araki, Mikiya & Shiga, Seiichi, 2015. "Impact of powertrain electrification, vehicle size reduction and lightweight materials substitution on energy use, CO2 emissions and cost of a passenger light-duty vehicle fleet," Energy, Elsevier, vol. 93(P2), pages 1489-1504.
    12. AlSabbagh, Maha & Siu, Yim Ling & Guehnemann, Astrid & Barrett, John, 2017. "Integrated approach to the assessment of CO2e-mitigation measures for the road passenger transport sector in Bahrain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 203-215.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. González Palencia, Juan C. & Sakamaki, Tsukasa & Araki, Mikiya & Shiga, Seiichi, 2015. "Impact of powertrain electrification, vehicle size reduction and lightweight materials substitution on energy use, CO2 emissions and cost of a passenger light-duty vehicle fleet," Energy, Elsevier, vol. 93(P2), pages 1489-1504.
    2. González Palencia, Juan C. & Furubayashi, Takaaki & Nakata, Toshihiko, 2012. "Energy use and CO2 emissions reduction potential in passenger car fleet using zero emission vehicles and lightweight materials," Energy, Elsevier, vol. 48(1), pages 548-565.
    3. González Palencia, Juan C. & Araki, Mikiya & Shiga, Seiichi, 2016. "Energy, environmental and economic impact of mini-sized and zero-emission vehicle diffusion on a light-duty vehicle fleet," Applied Energy, Elsevier, vol. 181(C), pages 96-109.
    4. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2015. "Comparative analysis of hydrogen, biofuels and electricity transitional pathways to sustainable transport in a renewable-based energy system," Energy, Elsevier, vol. 83(C), pages 614-627.
    5. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi & Keith, David R., 2016. "Analysis of supply-push strategies governing the transition to biofuel vehicles in a market-oriented renewable energy system," Energy, Elsevier, vol. 94(C), pages 409-421.
    6. Shafiei, Ehsan & Davidsdottir, Brynhildur & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2014. "Potential impact of transition to a low-carbon transport system in Iceland," Energy Policy, Elsevier, vol. 69(C), pages 127-142.
    7. Hao, Han & Wang, Sinan & Liu, Zongwei & Zhao, Fuquan, 2016. "The impact of stepped fuel economy targets on automaker's light-weighting strategy: The China case," Energy, Elsevier, vol. 94(C), pages 755-765.
    8. Hao, Han & Geng, Yong & Sarkis, Joseph, 2016. "Carbon footprint of global passenger cars: Scenarios through 2050," Energy, Elsevier, vol. 101(C), pages 121-131.
    9. González Palencia, Juan C. & Otsuka, Yuki & Araki, Mikiya & Shiga, Seiichi, 2017. "Scenario analysis of lightweight and electric-drive vehicle market penetration in the long-term and impact on the light-duty vehicle fleet," Applied Energy, Elsevier, vol. 204(C), pages 1444-1462.
    10. Dedinec, Aleksandar & Markovska, Natasa & Taseska, Verica & Duic, Neven & Kanevce, Gligor, 2013. "Assessment of climate change mitigation potential of the Macedonian transport sector," Energy, Elsevier, vol. 57(C), pages 177-187.
    11. Mahdi Salehi & Seyed Hamed Fahimifard & Grzegorz Zimon & Andrzej Bujak & Adam Sadowski, 2022. "The Effect of CO 2 Gas Emissions on the Market Value, Price and Shares Returns," Energies, MDPI, vol. 15(23), pages 1-17, December.
    12. Hao, Han & Liu, Zongwei & Zhao, Fuquan & Li, Weiqi & Hang, Wen, 2015. "Scenario analysis of energy consumption and greenhouse gas emissions from China's passenger vehicles," Energy, Elsevier, vol. 91(C), pages 151-159.
    13. Garcia, Rita & Freire, Fausto, 2017. "A review of fleet-based life-cycle approaches focusing on energy and environmental impacts of vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 935-945.
    14. Bishop, Justin D.K. & Martin, Niall P.D. & Boies, Adam M., 2014. "Cost-effectiveness of alternative powertrains for reduced energy use and CO2 emissions in passenger vehicles," Applied Energy, Elsevier, vol. 124(C), pages 44-61.
    15. Bishop, Justin D.K. & Martin, Niall P.D. & Boies, Adam M., 2016. "Quantifying the role of vehicle size, powertrain technology, activity and consumer behaviour on new UK passenger vehicle fleet energy use and emissions under different policy objectives," Applied Energy, Elsevier, vol. 180(C), pages 196-212.
    16. Brand, Christian, 2016. "Beyond ‘Dieselgate’: Implications of unaccounted and future air pollutant emissions and energy use for cars in the United Kingdom," Energy Policy, Elsevier, vol. 97(C), pages 1-12.
    17. Wu, Geng & Inderbitzin, Alessandro & Bening, Catharina, 2015. "Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments," Energy Policy, Elsevier, vol. 80(C), pages 196-214.
    18. Weixing Liu & Hongtao Yi, 2020. "What Affects the Diffusion of New Energy Vehicles Financial Subsidy Policy? Evidence from Chinese Cities," IJERPH, MDPI, vol. 17(3), pages 1-15, January.
    19. Kloess, Maximilian & Müller, Andreas, 2011. "Simulating the impact of policy, energy prices and technological progress on the passenger car fleet in Austria--A model based analysis 2010-2050," Energy Policy, Elsevier, vol. 39(9), pages 5045-5062, September.
    20. Gao, Jiayang & Zhang, Tao, 2022. "Effects of public funding on the commercial diffusion of on-site hydrogen production technology: A system dynamics perspective," Technological Forecasting and Social Change, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:123:y:2014:i:c:p:129-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.