IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v152y2017icp27-37.html
   My bibliography  Save this article

An efficiency-based concept to assess potential cost and greenhouse gas savings on German dairy farms

Author

Listed:
  • Wettemann, Patrick Johannes Christopher
  • Latacz-Lohmann, Uwe

Abstract

This article investigates potential savings of costs and greenhouse gas (GHG) emissions for a sample of 216 dairy farms in northern Germany using Data Envelopment Analysis. Tradeoffs between a cost-efficient and a GHG-efficient production are identified. For this purpose, an environmental-economic farm model is used, which allows ‘pricing’ the input with market prices and CO2 equivalents, respectively. Uncertainty of CO2 equivalents and volatility of input prices are taken into account and therefore efficiency scores are in the form of ranges. The results reveal that the sample farms are more GHG-efficient than cost-efficient. We estimate potential cost savings between 37.2% and 57.4% and potential savings in GHG emissions between 24.9% and 41.3%. Cost and GHG emission reductions are complementary across a wide range: by moving from the status quo to cost-efficient production, at least 87.5% of the GHG saving potential would be tapped. Unlocking the remaining reduction potential comes at a shadow price (abatement cost) of about €165/t CO2 equivalent. From an input allocative point of view, a change from cost-efficient production to GHG-efficient production requires reductions in nitrogen use and an extension of diesel use. Compared to the sample average and the cost-efficient farms, GHG efficient dairy farms are characterized by a higher share of legumes and a longer effective lifetime of cows.

Suggested Citation

  • Wettemann, Patrick Johannes Christopher & Latacz-Lohmann, Uwe, 2017. "An efficiency-based concept to assess potential cost and greenhouse gas savings on German dairy farms," Agricultural Systems, Elsevier, vol. 152(C), pages 27-37.
  • Handle: RePEc:eee:agisys:v:152:y:2017:i:c:p:27-37
    DOI: 10.1016/j.agsy.2016.11.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X16308113
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2016.11.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Malin & An, Qingxian & Zhang, Wei & Wang, Zeya & Wu, Jie, 2012. "Environmental efficiency evaluation based on data envelopment analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4465-4469.
    2. Sesmero, Juan P. & Perrin, Richard K. & Fulginiti, Lilyan E., 2010. "Environmental Efficiency Among Corn Ethanol Plants," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 61650, Agricultural and Applied Economics Association.
    3. De Cara, Stéphane & Jayet, Pierre-Alain, 2011. "Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement," Ecological Economics, Elsevier, vol. 70(9), pages 1680-1690, July.
    4. Dominic Moran & Michael Macleod & Eileen Wall & Vera Eory & Alistair McVittie & Andrew Barnes & Robert Rees & Cairistiona F. E. Topp & Andrew Moxey, 2011. "Marginal Abatement Cost Curves for UK Agricultural Greenhouse Gas Emissions," Journal of Agricultural Economics, Wiley Blackwell, vol. 62(1), pages 93-118, February.
    5. MacLeod, Michael & Moran, Dominic & Eory, Vera & Rees, R.M. & Barnes, Andrew & Topp, Cairistiona F.E. & Ball, Bruce & Hoad, Steve & Wall, Eileen & McVittie, Alistair & Pajot, Guillaume & Matthews, Rob, 2010. "Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK," Agricultural Systems, Elsevier, vol. 103(4), pages 198-209, May.
    6. Fare, Rolf & Grosskopf, Shawna & Tyteca, Daniel, 1996. "An activity analysis model of the environmental performance of firms--application to fossil-fuel-fired electric utilities," Ecological Economics, Elsevier, vol. 18(2), pages 161-175, August.
    7. Russell G. Thompson & F. D. Singleton & Robert M. Thrall & Barton A. Smith, 1986. "Comparative Site Evaluations for Locating a High-Energy Physics Lab in Texas," Interfaces, INFORMS, vol. 16(6), pages 35-49, December.
    8. Svend Rasmussen, 2010. "Scale efficiency in Danish agriculture: an input distance--function approach," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(3), pages 335-367, September.
    9. Laure Latruffe & Kelvin Balcombe & Sophia Davidova & Katarzyna Zawalinska, 2004. "Determinants of technical efficiency of crop and livestock farms in Poland," Applied Economics, Taylor & Francis Journals, vol. 36(12), pages 1255-1263.
    10. Tim Coelli & Ludwig Lauwers & Guido Huylenbroeck, 2007. "Environmental efficiency measurement and the materials balance condition," Journal of Productivity Analysis, Springer, vol. 28(1), pages 3-12, October.
    11. Mostafaee, A. & Saljooghi, F.H., 2010. "Cost efficiency measures in data envelopment analysis with data uncertainty," European Journal of Operational Research, Elsevier, vol. 202(2), pages 595-603, April.
    12. Blancard, Stéphane & Martin, Elsa, 2014. "Energy efficiency measurement in agriculture with imprecise energy content information," Energy Policy, Elsevier, vol. 66(C), pages 198-208.
    13. Wilson, Paul W, 1993. "Detecting Outliers in Deterministic Nonparametric Frontier Models with Multiple Outputs," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 319-323, July.
    14. Breustedt, Gunnar & Latacz-Lohmann, Uwe & Tiedemann, Torben, 2011. "Organic or conventional? Optimal dairy farming technology under the EU milk quota system and organic subsidies," Food Policy, Elsevier, vol. 36(2), pages 223-229, April.
    15. Lauwers, Ludwig, 2009. "Justifying the incorporation of the materials balance principle into frontier-based eco-efficiency models," Ecological Economics, Elsevier, vol. 68(6), pages 1605-1614, April.
    16. Camanho, A. S. & Dyson, R. G., 2005. "Cost efficiency measurement with price uncertainty: a DEA application to bank branch assessments," European Journal of Operational Research, Elsevier, vol. 161(2), pages 432-446, March.
    17. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    18. Thompson, Russell G. & Langemeier, Larry N. & Lee, Chih-Tah & Lee, Euntaik & Thrall, Robert M., 1990. "The role of multiplier bounds in efficiency analysis with application to Kansas farming," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 93-108.
    19. Johannes Sauer & Uwe Latacz-Lohmann, 2015. "Investment, technical change and efficiency: empirical evidence from German dairy production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 42(1), pages 151-175.
    20. Fare, Rolf, et al, 1989. "Multilateral Productivity Comparisons When Some Outputs Are Undesirable: A Nonparametric Approach," The Review of Economics and Statistics, MIT Press, vol. 71(1), pages 90-98, February.
    21. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    22. Simon Briner & Michael Hartmann & Robert Finger & Bernard Lehmann, 2012. "Greenhouse gas mitigation and offset options for suckler cow farms: an economic comparison for the Swiss case," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(4), pages 337-355, April.
    23. Stijn Reinhard & C.A. Knox Lovell & Geert Thijssen, 1999. "Econometric Estimation of Technical and Environmental Efficiency: An Application to Dutch Dairy Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 81(1), pages 44-60.
    24. Pittman, Russell W, 1983. "Multilateral Productivity Comparisons with Undesirable Outputs," Economic Journal, Royal Economic Society, vol. 93(372), pages 883-891, December.
    25. Daniel Tyteca, 1997. "Linear Programming Models for the Measurement of Environmental Performance of Firms—Concepts and Empirical Results," Journal of Productivity Analysis, Springer, vol. 8(2), pages 183-197, May.
    26. Rajiv D. Banker & Richard C. Morey, 1986. "Efficiency Analysis for Exogenously Fixed Inputs and Outputs," Operations Research, INFORMS, vol. 34(4), pages 513-521, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Le, Stephanie & Jeffrey, Scott R. & An, Henry, 2017. "Greenhouse gas emissions and productive efficiency in Alberta dairy production: What are the trade-offs?," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258487, Agricultural and Applied Economics Association.
    2. Anirban Nandy & Piyush Kumar Singh & Alok Kumar Singh, 2021. "Systematic Review and Meta- regression Analysis of Technical Efficiency of Agricultural Production Systems," Global Business Review, International Management Institute, vol. 22(2), pages 396-421, April.
    3. Habtamu Alem, 2023. "A parametric analysis of eco-efficiency and its determinants: Evidence from Norwegian dairy farms," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 69(7), pages 284-290.
    4. Lucio Cecchini & Francesco Romagnoli & Massimo Chiorri & Biancamaria Torquati, 2023. "Eco-Efficiency and Its Determinants: The Case of the Italian Beef Cattle Sector," Agriculture, MDPI, vol. 13(5), pages 1-18, May.
    5. Schulte, Hinrich D. & Armbrecht, Linda & Bürger, Rasmus & Gauly, Matthias & Musshoff, Oliver & Hüttel, Silke, 2018. "Let the cows graze: An empirical investigation on the trade-off between efficiency and farm animal welfare in milk production," Land Use Policy, Elsevier, vol. 79(C), pages 375-385.
    6. Czyżewski, Bazyli & Kryszak, Łukasz, 2023. "Can a pursuit of productivity be reconciled with sustainable practices in small-scale farming? – Evidence from central and eastern Europe," MPRA Paper 117642, University Library of Munich, Germany, revised 31 May 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blancard, Stéphane & Martin, Elsa, 2014. "Energy efficiency measurement in agriculture with imprecise energy content information," Energy Policy, Elsevier, vol. 66(C), pages 198-208.
    2. Hoang, Viet-Ngu & Coelli, Tim, 2011. "Measurement of agricultural total factor productivity growth incorporating environmental factors: A nutrients balance approach," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 462-474.
    3. Alfons Oude Lansink & Alan Wall, 2014. "Frontier models for evaluating environmental efficiency: an overview," Economics and Business Letters, Oviedo University Press, vol. 3(1), pages 43-50.
    4. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    5. Annageldy Arazmuradov, 2016. "Economic prospect on carbon emissions in Commonwealth of Independent States," Economic Change and Restructuring, Springer, vol. 49(4), pages 395-427, November.
    6. Benjamin Hampf, 2014. "Separating environmental efficiency into production and abatement efficiency: a nonparametric model with application to US power plants," Journal of Productivity Analysis, Springer, vol. 41(3), pages 457-473, June.
    7. Soledad Moya & Jordi Perramon & Anselm Constans, 2005. "IFRS Adoption in Europe: The Case of Germany," Working Papers 0501, Departament Empresa, Universitat Autònoma de Barcelona, revised Feb 2005.
    8. Jeanneaux, Philippe & Latruffe, Laure, 2016. "Modelling pollution-generating technologies in performance benchmarking: Recent developments, limits and future prospects in the nonparametric frameworkAuthor-Name: Dakpo, K. Hervé," European Journal of Operational Research, Elsevier, vol. 250(2), pages 347-359.
    9. Zhou, Peng & Poh, Kim Leng & Ang, Beng Wah, 2007. "A non-radial DEA approach to measuring environmental performance," European Journal of Operational Research, Elsevier, vol. 178(1), pages 1-9, April.
    10. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    11. Yang, Hongliang & Pollitt, Michael, 2010. "The necessity of distinguishing weak and strong disposability among undesirable outputs in DEA: Environmental performance of Chinese coal-fired power plants," Energy Policy, Elsevier, vol. 38(8), pages 4440-4444, August.
    12. Yang, Hongliang & Pollitt, Michael, 2009. "Incorporating both undesirable outputs and uncontrollable variables into DEA: The performance of Chinese coal-fired power plants," European Journal of Operational Research, Elsevier, vol. 197(3), pages 1095-1105, September.
    13. Behrouz Arabi & Susila Munisamy Doraisamy & Ali Emrouznejad & Alireza Khoshroo, 2017. "Eco-efficiency measurement and material balance principle: an application in power plants Malmquist Luenberger Index," Annals of Operations Research, Springer, vol. 255(1), pages 221-239, August.
    14. Dakpo, K Hervé, 2016. "On modeling pollution-generating technologies: a new formulation of the by-production approach," Working Papers 245191, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    15. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    16. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    17. Vlontzos, George & Niavis, Spyros & Manos, Basil, 2014. "A DEA approach for estimating the agricultural energy and environmental efficiency of EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 91-96.
    18. Leleu, Hervé, 2013. "Shadow pricing of undesirable outputs in nonparametric analysis," European Journal of Operational Research, Elsevier, vol. 231(2), pages 474-480.
    19. Andrés J. Picazo-Tadeo & Diego Prior, 2005. "Efficiency and Environmental Regulation: A "Complex Situation"," Working Papers 0502, Departament Empresa, Universitat Autònoma de Barcelona, revised Feb 2005.
    20. María Pérez Urdiales & Alfons Oude Lansink & Alan Wall, 2016. "Eco-efficiency Among Dairy Farmers: The Importance of Socio-economic Characteristics and Farmer Attitudes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 64(4), pages 559-574, August.

    More about this item

    Keywords

    Data Envelopment Analysis; Greenhouse gas efficiency; Cost efficiency; Shadow prices; Uncertainty; Environmental-economic modelling;
    All these keywords.

    JEL classification:

    • D21 - Microeconomics - - Production and Organizations - - - Firm Behavior: Theory
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:152:y:2017:i:c:p:27-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.