Advanced Search
MyIDEAS: Login

Extremum Estimation when the Predictors are Estimated from Large Panels

Contents:

Author Info

  • Jushan Bai

    (Department of Economics, NYU)

  • Serena Ng

    (Department of Economics, Columbia University)

Abstract

Much is written about the use of factors estimated by the method of principal components from large panels in linear regression models. In this paper, we provide an analysis for non-linear estimation and establish the conditions under which the estimated factors can be treated as though they were observable. The results can be used to estimate probabilities as in probit type analysis as well as classification of observations into types conditional on covariates. Comparison with traditional generated regressors is also made.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.aeconf.net/Articles/Nov2008/aef090201.pdf
Download Restriction: no

File URL: http://down.aefweb.net/AefArticles/aef090201.pdf
Download Restriction: no

Bibliographic Info

Article provided by Society for AEF in its journal Annals of Economics and Finance.

Volume (Year): 9 (2008)
Issue (Month): 2 (November)
Pages: 201-222

as in new window
Handle: RePEc:cuf:journl:y:2008:v:9:i:2:p:201-222

Contact details of provider:
Web page: http://www.aeconf.net/
More information through EDIRC

Related research

Keywords: Non-Linear estimation; Large panels; Extremum estimators; Probit Analysis;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
  2. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  3. Pagan, Adrian, 1984. "Econometric Issues in the Analysis of Regressions with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 221-47, February.
  4. Bernanke, Ben S. & Boivin, Jean, 2003. "Monetary policy in a data-rich environment," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 525-546, April.
  5. Bai, Jushan & Ng, Serena, 2006. "Evaluating latent and observed factors in macroeconomics and finance," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 507-537.
  6. Amemiya, Yasuo, 1985. "Instrumental variable estimator for the nonlinear errors-in-variables model," Journal of Econometrics, Elsevier, vol. 28(3), pages 273-289, June.
  7. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
  8. Hansen, Lars Peter & Singleton, Kenneth J, 1982. "Generalized Instrumental Variables Estimation of Nonlinear Rational Expectations Models," Econometrica, Econometric Society, vol. 50(5), pages 1269-86, September.
  9. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Olfa Kaabia & Ilyes Abid, 2012. "Theoretical Channels of International,Transmission During the Subprime Crisis to OCDE Countries : A FAVAR Model Under Bayesian Framework," EconomiX Working Papers 2012-40, University of Paris West - Nanterre la Défense, EconomiX.
  2. Bellégo, C. & Ferrara, L., 2012. "Macro-financial linkages and business cycles: A factor-augmented probit approach," Economic Modelling, Elsevier, vol. 29(5), pages 1793-1797.
  3. Cipollini, A. & Kapetanios, G., 2009. "Forecasting financial crises and contagion in Asia using dynamic factor analysis," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 188-200, March.
  4. Barry Eichengreen & Ashoka Mody & Milan Nedeljkovic & Lucio Sarno, 2012. "How the Subprime Crisis Went Global: Evidence from Bank Credit Default Swap Spreads," Working papers 21, National Bank of Serbia.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:cuf:journl:y:2008:v:9:i:2:p:201-222. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Qiang Gao).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.