IDEAS home Printed from https://ideas.repec.org/a/bla/agecon/v53y2022is1p109-120.html
   My bibliography  Save this article

Precision livestock agriculture and productive efficiency: The case of milk recording in Ireland

Author

Listed:
  • Iordanis Parikoglou
  • Grigorios Emvalomatis
  • Fiona Thorne

Abstract

This article investigates the effect of precision livestock agriculture and, in particular, milk recording, on the productive efficiency of Irish dairy farms. We use a micropanel of farms that covers the period 2008–2017 and a dynamic stochastic frontier (DSF) model to account for the dependence of efficiency on past values. This allows us to distinguish between short‐ and long‐run effects of precision livestock agriculture practices on technical efficiency (TE). We provide evidence that the Irish dairy sector experienced fast productivity growth in the period covered by the data, which was achieved mostly through technical change (TC) and efficiency improvements, but not due to scale effects (SEs) at the farm level. Furthermore, our results show that precision livestock agriculture in the form of milk recording contributed to a more efficient use of resources. Specifically, use of milk recording is found to affect positively TE in both the short and long run. Finally, we provide policy implications and directions for future research.

Suggested Citation

  • Iordanis Parikoglou & Grigorios Emvalomatis & Fiona Thorne, 2022. "Precision livestock agriculture and productive efficiency: The case of milk recording in Ireland," Agricultural Economics, International Association of Agricultural Economists, vol. 53(S1), pages 109-120, November.
  • Handle: RePEc:bla:agecon:v:53:y:2022:i:s1:p:109-120
    DOI: 10.1111/agec.12729
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/agec.12729
    Download Restriction: no

    File URL: https://libkey.io/10.1111/agec.12729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Treadway, Arthur B., 1970. "Adjustment costs and variable inputs in the theory of the competitive firm," Journal of Economic Theory, Elsevier, vol. 2(4), pages 329-347, December.
    2. Maria Martinez Cillero & Fiona Thorne & Michael Wallace & James Breen & Thia Hennessy, 2018. "The Effects of Direct Payments on Technical Efficiency of Irish Beef Farms: A Stochastic Frontier Analysis," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 669-687, September.
    3. Efthymios G. Tsionas, 2006. "Inference in dynamic stochastic frontier models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(5), pages 669-676, July.
    4. Rebecca Schewe & Diana Stuart, 2015. "Diversity in agricultural technology adoption: How are automatic milking systems used and to what end?," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 32(2), pages 199-213, June.
    5. Skevas, Ioannis, 2020. "Inference in the spatial autoregressive efficiency model with an application to Dutch dairy farms," European Journal of Operational Research, Elsevier, vol. 283(1), pages 356-364.
    6. Jeffrey M. Wooldridge, 2005. "Simple solutions to the initial conditions problem in dynamic, nonlinear panel data models with unobserved heterogeneity," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 39-54, January.
    7. Evangelia Desli & Subhash Ray & Subal Kumbhakar, 2003. "A dynamic stochastic frontier production model with time-varying efficiency," Applied Economics Letters, Taylor & Francis Journals, vol. 10(10), pages 623-626.
    8. Efthymios G. Tsionas & Subal C. Kumbhakar, 2004. "Markov switching stochastic frontier model," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 398-425, December.
    9. Stephen B. Harsh, 1978. "The Developing Technology of Computerized Information Systems," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 60(5), pages 908-912.
    10. Henningsen, Arne & Mpeta, Daniel F. & Adem, Anwar S. & Kuzilwa, Joseph A. & Czekaj, Tomasz G., 2015. "The Effects of Contract Farming on Efficiency and Productivity of Small-Scare Sunflower Farmers in Tanzania," 2015 Conference, August 9-14, 2015, Milan, Italy 212478, International Association of Agricultural Economists.
    11. Batte, Marvin T. & Schnitkey, Gary D., 1989. "Emerging Technologies And Their Impact On American Agriculture: Information Technologies," 1989 Conference, January 7-10, Tucson, Arizona 260164, Regional Research Committe NC-181: Determinants of Farm Size and Structure.
    12. A. B. Treadway, 1969. "On Rational Entrepreneurial Behaviour and the Demand for Investment," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(2), pages 227-239.
    13. Jean-Paul Chavas, 2012. "On learning and the economics of firm efficiency: a state-contingent approach," Journal of Productivity Analysis, Springer, vol. 38(1), pages 53-62, August.
    14. Grigorios Emvalomatis, 2012. "Adjustment and unobserved heterogeneity in dynamic stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 37(1), pages 7-16, February.
    15. Stefanou, Spiro E., 2009. "A Dynamic Characterization of Efficiency," Agricultural Economics Review, Greek Association of Agricultural Economists, vol. 10(1), pages 1-16.
    16. Krijn J. Poppe & Sjaak Wolfert & Cor Verdouw & Tim Verwaart, 2013. "Information and Communication Technology as a Driver for Change in Agri-food Chains," EuroChoices, The Agricultural Economics Society, vol. 12(1), pages 60-65, April.
    17. Massimo Filippini & Thomas Geissmann & William H. Greene, 2018. "Persistent and transient cost efficiency—an application to the Swiss hydropower sector," Journal of Productivity Analysis, Springer, vol. 49(1), pages 65-77, February.
    18. Simone Pieralli & Silke Hüttel & Martin Odening, 2017. "Abandonment of milk production under uncertainty and inefficiency: the case of western German Farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 44(3), pages 425-454.
    19. Elizaphan J. O. Rao & Bernhard Brümmer & Matin Qaim, 2012. "Farmer Participation in Supermarket Channels, Production Technology, and Efficiency: The Case of Vegetables in Kenya," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(4), pages 891-912.
    20. Ludwig M. Eisgruber, 1973. "Managerial Information and Decision Systems in the U. S. A.: Historical Developments, Current Status, and Major Issues," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 55(5), pages 930-937.
    21. Sophia Davidova & Laure Latruffe, 2007. "Relationships between Technical Efficiency and Financial Management for Czech Republic Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(2), pages 269-288, June.
    22. Peter Bogetoft & Jens Hougaard, 2003. "Rational Inefficiencies," Journal of Productivity Analysis, Springer, vol. 20(3), pages 243-271, November.
    23. Boris Bravo-Ureta & William Greene & Daniel Solís, 2012. "Technical efficiency analysis correcting for biases from observed and unobserved variables: an application to a natural resource management project," Empirical Economics, Springer, vol. 43(1), pages 55-72, August.
    24. Jean-Paul Chavas & Rulon D. Pope, 1984. "Information: Its Measurement and Valuation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 66(5), pages 705-710.
    25. Madhu Khanna, 2001. "Sequential Adoption of Site-Specific Technologies and its Implications for Nitrogen Productivity: A Double Selectivity Model," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 83(1), pages 35-51.
    26. Fatima Lambarraa & Spiro Stefanou & José M. Gil, 2016. "The analysis of irreversibility, uncertainty and dynamic technical inefficiency on the investment decision in the Spanish olive sector," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 43(1), pages 59-77.
    27. Kumbhakar, Subal C & Ghosh, Soumendra & McGuckin, J Thomas, 1991. "A Generalized Production Frontier Approach for Estimating Determinants of Inefficiency in U.S. Dairy Farms," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(3), pages 279-286, July.
    28. Galán, Jorge E. & Veiga, Helena & Wiper, Michael P., 2015. "Dynamic effects in inefficiency: Evidence from the Colombian banking sector," European Journal of Operational Research, Elsevier, vol. 240(2), pages 562-571.
    29. C. Robert Taylor & Jean-Paul Chavas, 1980. "Estimation and Optimal Control of an Uncertain Production Process," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 62(4), pages 675-680.
    30. Antonio Alvarez & Julio del Corral, 2010. "Identifying different technologies using a latent class model: extensive versus intensive dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 37(2), pages 231-250, June.
    31. Subal C. Kumbhakar & Gudbrand Lien & Ola Flaten & Ragnar Tveterås, 2008. "Impacts of Norwegian Milk Quotas on Output Growth: A Modified Distance Function Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 59(2), pages 350-369, June.
    32. Bradford L. Barham & Jeremy D. Foltz & Douglas Jackson-Smith & Sunung Moon, 2004. "The Dynamics of Agricultural Biotechnology Adoption: Lessons from series rBST Use in Wisconsin, 1994–2001," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(1), pages 61-72.
    33. Johannes Sauer & Uwe Latacz-Lohmann, 2015. "Investment, technical change and efficiency: empirical evidence from German dairy production," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 42(1), pages 151-175.
    34. Robert Finger & Scott M. Swinton & Nadja El Benni & Achim Walter, 2019. "Precision Farming at the Nexus of Agricultural Production and the Environment," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 313-335, October.
    35. Alfons Weersink & Evan Fraser & David Pannell & Emily Duncan & Sarah Rotz, 2018. "Opportunities and Challenges for Big Data in Agricultural and Environmental Analysis," Annual Review of Resource Economics, Annual Reviews, vol. 10(1), pages 19-37, October.
    36. Grigorios Emvalomatis, 2012. "Productivity Growth in German Dairy Farming using a Flexible Modelling Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 63(1), pages 83-101, February.
    37. O'Neill, S. & Matthews, A. & Leavy, A, 1999. "Farm Technical Efficiency and Extension," Trinity Economics Papers 9912, Trinity College Dublin, Department of Economics.
    38. Poe, Gregory L. & Bishop, Richard C. & Cochrane, Jeffrey A., 1991. "Benefit-Cost Principles for Land Information Systems," Staff Papers 200534, University of Wisconsin-Madison, Department of Agricultural and Applied Economics.
    39. Skevas, Ioannis & Emvalomatis, Grigorios & Brümmer, Bernhard, 2018. "Productivity growth measurement and decomposition under a dynamic inefficiency specification: The case of German dairy farms," European Journal of Operational Research, Elsevier, vol. 271(1), pages 250-261.
    40. Bravo-Ureta, Boris E. & Evenson, Robert E., 1994. "Efficiency in agricultural production: The case of peasant farmers in eastern Paraguay," Agricultural Economics, Blackwell, vol. 10(1), pages 27-37, January.
    41. Emma Jane Dillon & Thia Hennessy & Peter Howley & John Cullinan & Kevin Heanue & Anthony Cawley, 2018. "Routine inertia and reactionary response in animal health best practice," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 35(1), pages 207-221, March.
    42. Balaine, Lorraine & Dillon, Emma J. & Läpple, Doris & Lynch, John, 2020. "Can technology help achieve sustainable intensification? Evidence from milk recording on Irish dairy farms," Land Use Policy, Elsevier, vol. 92(C).
    43. Boris E. Bravo‐Ureta & Robert E. Evenson, 1994. "Efficiency in agricultural production: the case of peasant farmers in eastern Paraguay," Agricultural Economics, International Association of Agricultural Economists, vol. 10(1), pages 27-37, January.
    44. Robert G. Chambers & Teresa Serra, 2018. "The social dimension of firm performance: a data envelopment approach," Empirical Economics, Springer, vol. 54(1), pages 189-206, February.
    45. Lajoie-O'Malley, Alana & Bronson, Kelly & van der Burg, Simone & Klerkx, Laurens, 2020. "The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents," Ecosystem Services, Elsevier, vol. 45(C).
    46. Michael Rothschild, 1971. "On the Cost of Adjustment," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 85(4), pages 605-622.
    47. Carol Newman & Alan Matthews, 2006. "The productivity performance of Irish dairy farms 1984–2000: a multiple output distance function approach," Journal of Productivity Analysis, Springer, vol. 26(2), pages 191-205, October.
    48. Subal C. Kumbhakar & Almas Heshmati, 1995. "Efficiency Measurement in Swedish Dairy Farms: An Application of Rotating Panel Data, 1976–88," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(3), pages 660-674.
    49. Ariel Dinar & Giannis Karagiannis & Vangelis Tzouvelekas, 2007. "Evaluating the impact of agricultural extension on farms' performance in Crete: a nonneutral stochastic frontier approach," Agricultural Economics, International Association of Agricultural Economists, vol. 36(2), pages 135-146, March.
    50. Xueqin Zhu & Alfons Oude Lansink, 2010. "Impact of CAP Subsidies on Technical Efficiency of Crop Farms in Germany, the Netherlands and Sweden," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(3), pages 545-564, September.
    51. Luis Orea, 2002. "Parametric Decomposition of a Generalized Malmquist Productivity Index," Journal of Productivity Analysis, Springer, vol. 18(1), pages 5-22, July.
    52. Murty, Sushama & Robert Russell, R. & Levkoff, Steven B., 2012. "On modeling pollution-generating technologies," Journal of Environmental Economics and Management, Elsevier, vol. 64(1), pages 117-135.
    53. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    54. Wolfert, Sjaak & Ge, Lan & Verdouw, Cor & Bogaardt, Marc-Jeroen, 2017. "Big Data in Smart Farming – A review," Agricultural Systems, Elsevier, vol. 153(C), pages 69-80.
    55. Lambert, Dayton M. & Paudel, Krishna P. & Larson, James A., 2015. "Bundled Adoption of Precision Agriculture Technologies by Cotton Producers," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 40(2), pages 1-21, May.
    56. Carol Newman & Alan Matthews, 2007. "Evaluating the Productivity Performance of Agricultural Enterprises in Ireland using a Multiple Output Distance Function Approach," Journal of Agricultural Economics, Wiley Blackwell, vol. 58(1), pages 128-151, February.
    57. Fuglie, Keith & Clancy, Matthew & Heisey, Paul & Macdonald, James, 2017. "Research, Productivity, And Output Growth In U.S. Agriculture," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 49(4), pages 514-554, November.
    58. Ole Boysen & Ana Corina Miller & Alan Matthews, 2016. "Economic and Household Impacts of Projected Policy Changes for the Irish Agri-food Sector," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(1), pages 105-129, February.
    59. repec:zwi:journl:v:43:y:2012:i:1:p:55-72 is not listed on IDEAS
    60. Oliver T. Coomes & Bradford L. Barham & Graham K. MacDonald & Navin Ramankutty & Jean-Paul Chavas, 2019. "Leveraging total factor productivity growth for sustainable and resilient farming," Nature Sustainability, Nature, vol. 2(1), pages 22-28, January.
    61. Robert E. Lucas & Jr., 1967. "Adjustment Costs and the Theory of Supply," Journal of Political Economy, University of Chicago Press, vol. 75, pages 321-321.
    62. Schimmelpfennig, David & Ebel, Robert, 2016. "Sequential Adoption and Cost Savings from Precision Agriculture," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(1), pages 1-19, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skevas, Ioannis & Emvalomatis, Grigorios & Brümmer, Bernhard, 2018. "Productivity growth measurement and decomposition under a dynamic inefficiency specification: The case of German dairy farms," European Journal of Operational Research, Elsevier, vol. 271(1), pages 250-261.
    2. Ioannis Skevas & Grigorios Emvalomatis & Bernhard Brümmer, 2018. "The effect of farm characteristics on the persistence of technical inefficiency: a case study in German dairy farming," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 3-25.
    3. Jean Joseph Minviel & Timo Sipiläinen, 2018. "Dynamic stochastic analysis of the farm subsidy-efficiency link: evidence from France," Journal of Productivity Analysis, Springer, vol. 50(1), pages 41-54, October.
    4. Ioannis Skevas, 2023. "A novel modeling framework for quantifying spatial spillovers on total factor productivity growth and its components," American Journal of Agricultural Economics, John Wiley & Sons, vol. 105(4), pages 1221-1247, August.
    5. Skevas, Ioannis, 2020. "Inference in the spatial autoregressive efficiency model with an application to Dutch dairy farms," European Journal of Operational Research, Elsevier, vol. 283(1), pages 356-364.
    6. Dakpo, K Hervé & Lansink, Alfons Oude, 2019. "Dynamic pollution-adjusted inefficiency under the by-production of bad outputs," European Journal of Operational Research, Elsevier, vol. 276(1), pages 202-211.
    7. Jean Joseph Minviel & Timo Sipiläinen, 2021. "A dynamic stochastic frontier approach with persistent and transient inefficiency and unobserved heterogeneity," Agricultural Economics, International Association of Agricultural Economists, vol. 52(4), pages 575-589, July.
    8. Fabian Frick & Johannes Sauer, 2021. "Technological Change in Dairy Farming with Increased Price Volatility," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(2), pages 564-588, June.
    9. Baños-Pino, José F. & Boto-García, David & Zapico, Emma, 2021. "Persistence and dynamics in the efficiency of toll motorways: The Spanish case," Efficiency Series Papers 2021/03, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    10. Silva, Elvira & Magalhães, Manuela, 2023. "Environmental efficiency, irreversibility and the shadow price of emissions," European Journal of Operational Research, Elsevier, vol. 306(2), pages 955-967.
    11. Koiry, Subrata & Huang, Wei, 2023. "Do ecological protection approaches affect total factor productivity change of cropland production in Sweden?," Ecological Economics, Elsevier, vol. 209(C).
    12. Silva, Elvira & Lansink, Alfons Oude & Stefanou, Spiro E., 2015. "The adjustment-cost model of the firm: Duality and productive efficiency," International Journal of Production Economics, Elsevier, vol. 168(C), pages 245-256.
    13. Latruffe, Laure & Bravo-Ureta, Boris E. & Moreira, Victor H. & Desjeux, Yann & Dupraz, Pierre, 2011. "Productivity and Subsidies in European Union Countries: An Analysis for Dairy Farms Using Input Distance Frontiers," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114396, European Association of Agricultural Economists.
    14. Amer Ait Sidhoum & K Hervé Dakpo & Laure Latruffe, 2022. "Trade-offs between economic, environmental and social sustainability on farms using a latent class frontier efficiency model: Evidence for Spanish crop farms," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-17, January.
    15. Skevas, Ioannis & Skevas, Theodoros, 2021. "A generalized true random-effects model with spatially autocorrelated persistent and transient inefficiency," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1131-1142.
    16. Ioannis Skevas & Alfons Oude Lansink, 2020. "Dynamic Inefficiency and Spatial Spillovers in Dutch Dairy Farming," Journal of Agricultural Economics, Wiley Blackwell, vol. 71(3), pages 742-759, September.
    17. Amer Ait Sidhoum & Philipp Mennig & Johannes Sauer, 2023. "Do agri-environment measures help improve environmental and economic efficiency? Evidence from Bavarian dairy farmers," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(3), pages 918-953.
    18. Baños-Pino, José F. & Boto-García, David & Zapico, Emma, 2022. "Persistence and dynamics in the efficiency of toll motorways: The Spanish case," Economics of Transportation, Elsevier, vol. 31(C).
    19. Magambo, Isaiah & Dikgang, Johane & Gelo, Dambala & Tregenna, Fiona, 2021. "Environmental and Technical Efficiency in Large Gold Mines in Developing Countries," MPRA Paper 108068, University Library of Munich, Germany.
    20. Ingram, Julie & Maye, Damian & Bailye, Clive & Barnes, Andrew & Bear, Christopher & Bell, Matthew & Cutress, David & Davies, Lynfa & de Boon, Auvikki & Dinnie, Liz & Gairdner, Julian & Hafferty, Caitl, 2022. "What are the priority research questions for digital agriculture?," Land Use Policy, Elsevier, vol. 114(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:agecon:v:53:y:2022:i:s1:p:109-120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.