IDEAS home Printed from https://ideas.repec.org/r/tiu/tiutis/6f2cbb5e-2d53-4be6-a4f9-940b5e47448b.html
   My bibliography  Save this item

Classification of Energy Models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Després, Jacques & Hadjsaid, Nouredine & Criqui, Patrick & Noirot, Isabelle, 2015. "Modelling the impacts of variable renewable sources on the power sector: Reconsidering the typology of energy modelling tools," Energy, Elsevier, vol. 80(C), pages 486-495.
  2. Schenk, Niels J. & Moll, Henri C. & Schoot Uiterkamp, Anton J.M., 2007. "Meso-level analysis, the missing link in energy strategies," Energy Policy, Elsevier, vol. 35(3), pages 1505-1516, March.
  3. Natalia Gennadyevna Zakharchenko & Olga Valeryevna Dyomina, 2015. "Modelling Energy - Economy Interactions: The Far East Experience," Spatial Economics=Prostranstvennaya Ekonomika, Economic Research Institute, Far Eastern Branch, Russian Academy of Sciences (Khabarovsk, Russia), issue 1, pages 62-90.
  4. Bouw, Kathelijne & Noorman, Klaas Jan & Wiekens, Carina J. & Faaij, André, 2021. "Local energy planning in the built environment: An analysis of model characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  5. Georgopoulou, E. & Mirasgedis, S. & Sarafidis, Y. & Gakis, N. & Hontou, V. & Lalas, D.P. & Steiner, D. & Tuerk, A. & Fruhmann, C. & Pucker, J., 2015. "Lessons learnt from a sectoral analysis of greenhouse gas mitigation potential in the Balkans," Energy, Elsevier, vol. 92(P3), pages 577-591.
  6. Charani Shandiz, Saeid & Rismanchi, Behzad & Foliente, Greg, 2021. "Energy master planning for net-zero emission communities: State of the art and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  7. Lore Abart-Heriszt & Susanna Erker & Gernot Stoeglehner, 2019. "The Energy Mosaic Austria—A Nationwide Energy and Greenhouse Gas Inventory on Municipal Level as Action Field of Integrated Spatial and Energy Planning," Energies, MDPI, vol. 12(16), pages 1-22, August.
  8. Thomas Pregger & Tobias Naegler & Wolfgang Weimer-Jehle & Sigrid Prehofer & Wolfgang Hauser, 2020. "Moving towards socio-technical scenarios of the German energy transition—lessons learned from integrated energy scenario building," Climatic Change, Springer, vol. 162(4), pages 1743-1762, October.
  9. Isabelle BROSE, 2008. "Monetization of Environmental Externalities (Emissions) from Bioenergy," Economics and Applied Informatics, "Dunarea de Jos" University of Galati, Faculty of Economics and Business Administration, issue 1, pages 13-18.
  10. Savvidis, Georgios & Siala, Kais & Weissbart, Christoph & Schmidt, Lukas & Borggrefe, Frieder & Kumar, Subhash & Pittel, Karen & Madlener, Reinhard & Hufendiek, Kai, 2019. "The gap between energy policy challenges and model capabilities," Energy Policy, Elsevier, vol. 125(C), pages 503-520.
  11. Vanegas Cantarero, María Mercedes, 2018. "Reviewing the Nicaraguan transition to a renewable energy system: Why is “business-as-usual” no longer an option?," Energy Policy, Elsevier, vol. 120(C), pages 580-592.
  12. Jacques Després & Patrick Criqui & Silvana Mima & Nouredine Hadjsaid & Isabelle Noirot, 2014. "Analysing the interactions between Variable Renewable Energies, electricity storage and grid in long term energy modelling tools," Post-Print hal-01279461, HAL.
  13. Nadia S. Ouedraogo, 2017. "Energy futures modelling for African countries: LEAP model application," WIDER Working Paper Series wp-2017-56, World Institute for Development Economic Research (UNU-WIDER).
  14. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
  15. Vaccaro, Roberto & Rocco, Matteo V., 2021. "Quantifying the impact of low carbon transition scenarios at regional level through soft-linked energy and economy models: The case of South-Tyrol Province in Italy," Energy, Elsevier, vol. 220(C).
  16. Graeme S. Hawker & Keith R. W. Bell, 2020. "Making energy system models useful: Good practice in the modelling of multiple vectors," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
  17. Densing, M. & Panos, E. & Hirschberg, S., 2016. "Meta-analysis of energy scenario studies: Example of electricity scenarios for Switzerland," Energy, Elsevier, vol. 109(C), pages 998-1015.
  18. Hall, Lisa M.H. & Buckley, Alastair R., 2016. "A review of energy systems models in the UK: Prevalent usage and categorisation," Applied Energy, Elsevier, vol. 169(C), pages 607-628.
  19. Martin Hammerschmid & Johannes Konrad & Andreas Werner & Tom Popov & Stefan Müller, 2022. "ENECO 2 Calc—A Modeling Tool for the Investigation of Energy Transition Paths toward Climate Neutrality within Municipalities," Energies, MDPI, vol. 15(19), pages 1-32, September.
  20. Urban, F. & Benders, R.M.J. & Moll, H.C., 2007. "Modelling energy systems for developing countries," Energy Policy, Elsevier, vol. 35(6), pages 3473-3482, June.
  21. Mirakyan, Atom & De Guio, Roland, 2013. "Integrated energy planning in cities and territories: A review of methods and tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 289-297.
  22. Przemysław Kaszyński & Jacek Kamiński, 2020. "Coal Demand and Environmental Regulations: A Case Study of the Polish Power Sector," Energies, MDPI, vol. 13(6), pages 1-24, March.
  23. Ramachandra, T.V., 2009. "RIEP: Regional integrated energy plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 285-317, February.
  24. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
  25. Khan, Muhammad Arshad, 2015. "Modelling and forecasting the demand for natural gas in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1145-1159.
  26. Ilaria Perissi & Gianluca Martelloni & Ugo Bardi & Davide Natalini & Aled Jones & Angel Nikolaev & Lukas Eggler & Martin Baumann & Roger Samsó & Jordi Solé, 2021. "Cross-Validation of the MEDEAS Energy-Economy-Environment Model with the Integrated MARKAL-EFOM System (TIMES) and the Long-Range Energy Alternatives Planning System (LEAP)," Sustainability, MDPI, vol. 13(4), pages 1-27, February.
  27. Musonye, Xavier S. & Davíðsdóttir, Brynhildur & Kristjánsson, Ragnar & Ásgeirsson, Eyjólfur I. & Stefánsson, Hlynur, 2020. "Integrated energy systems’ modeling studies for sub-Saharan Africa: A scoping review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
  28. Prina, Matteo Giacomo & Manzolini, Giampaolo & Moser, David & Nastasi, Benedetto & Sparber, Wolfram, 2020. "Classification and challenges of bottom-up energy system models - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
  29. Jacques Després & Patrick Criqui & Silvana Mima & Nouredine Hadjsaid & Isabelle Noirot, 2014. "Variable renewable energies and storage development in long term energy modelling tools," Post-Print hal-01279467, HAL.
  30. Amorim, Filipa & Pina, André & Gerbelová, Hana & Pereira da Silva, Patrícia & Vasconcelos, Jorge & Martins, Victor, 2014. "Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling," Energy, Elsevier, vol. 69(C), pages 104-112.
  31. Magdalena Fallde & Johan Torén & Elisabeth Wetterlund, 2017. "Energy System Models as a Means of Visualising Barriers and Drivers of Forest-Based Biofuels: An Interview Study of Developers and Potential Users," Sustainability, MDPI, vol. 9(10), pages 1-19, October.
  32. Marlene Ofelia Sanchez-Escobar & Julieta Noguez & Jose Martin Molina-Espinosa & Rafael Lozano-Espinosa & Genoveva Vargas-Solar, 2021. "The Contribution of Bottom-Up Energy Models to Support Policy Design of Electricity End-Use Efficiency for Residential Buildings and the Residential Sector: A Systematic Review," Energies, MDPI, vol. 14(20), pages 1-28, October.
  33. Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Wilson, Uwemedimo N. & Eterigho-Ikelegbe, Orevaoghene, 2021. "Update on current approaches, challenges, and prospects of modeling and simulation in renewable and sustainable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
  34. Barteczko-Hibbert, Christian & Bonis, Ioannis & Binns, Michael & Theodoropoulos, Constantinos & Azapagic, Adisa, 2014. "A multi-period mixed-integer linear optimisation of future electricity supply considering life cycle costs and environmental impacts," Applied Energy, Elsevier, vol. 133(C), pages 317-334.
  35. Birgit A. Henrich & Thomas Hoppe & Devin Diran & Zofia Lukszo, 2021. "The Use of Energy Models in Local Heating Transition Decision Making: Insights from Ten Municipalities in The Netherlands," Energies, MDPI, vol. 14(2), pages 1-23, January.
  36. Nadia S. Ouedraogo, 2017. "Energy futures modelling for African countries: LEAP model application," WIDER Working Paper Series 056, World Institute for Development Economic Research (UNU-WIDER).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.