IDEAS home Printed from https://ideas.repec.org/r/spr/comgts/v3y2006i4p307-330.html
   My bibliography  Save this item

Leader-Follower Equilibria for Electric Power and NO x Allowances Markets

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Christos N. Dimitriadis & Evangelos G. Tsimopoulos & Michael C. Georgiadis, 2021. "A Review on the Complementarity Modelling in Competitive Electricity Markets," Energies, MDPI, vol. 14(21), pages 1-27, November.
  2. Nguyen, Hieu T. & Felder, Frank A., 2020. "Generation expansion planning with renewable energy credit markets: A bilevel programming approach," Applied Energy, Elsevier, vol. 276(C).
  3. László Á. Kóczy & Dávid Csercsik, 2011. "Externalities in the games over electrical power transmission networks," Working Paper Series 1103, Óbuda University, Keleti Faculty of Business and Management.
  4. Dimitriadis, Christos N. & Tsimopoulos, Evangelos G. & Georgiadis, Michael C., 2023. "Optimal bidding strategy of a gas-fired power plant in interdependent low-carbon electricity and natural gas markets," Energy, Elsevier, vol. 277(C).
  5. Carlo Stagnaro, 2017. "Competition and Innovation in Retail Electricity Markets: Evidence from Italy," Economic Affairs, Wiley Blackwell, vol. 37(1), pages 85-101, February.
  6. Trüby, Johannes, 2013. "Strategic behaviour in international metallurgical coal markets," Energy Economics, Elsevier, vol. 36(C), pages 147-157.
  7. S. Siddiqui & S. Gabriel, 2013. "An SOS1-Based Approach for Solving MPECs with a Natural Gas Market Application," Networks and Spatial Economics, Springer, vol. 13(2), pages 205-227, June.
  8. Makoto Tanaka and Yihsu Chen, 2012. "Emissions Trading in Forward and Spot Markets for Electricity," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
  9. repec:diw:diwwpp:dp1185 is not listed on IDEAS
  10. Giuseppe De Feo & Joana Resende & Maria-Eugenia Sanin, 2012. "Optimal Allocation Of Tradable Emission Permits Under Upstream–Downstream Strategic Interaction," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 14(04), pages 1-23.
  11. Kasina, Saamrat & Hobbs, Benjamin F., 2020. "The value of cooperation in interregional transmission planning: A noncooperative equilibrium model approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 740-752.
  12. Francesca Bonenti & Giorgia Oggioni & Elisabetta Allevi & Giacomo Marangoni, 2011. "Evaluating the Impacts of the EU-ETS on Prices, Investments and Profits of the Italian Electricity Market," Working Papers 2011.99, Fondazione Eni Enrico Mattei.
  13. Gabriel, Steven A. & Leuthold, Florian U., 2010. "Solving discretely-constrained MPEC problems with applications in electric power markets," Energy Economics, Elsevier, vol. 32(1), pages 3-14, January.
  14. Elisabetta Allevi & Adriana Gnudi & Igor V. Konnov & Giorgia Oggioni, 2017. "Dynamic Spatial Auction Market Models with General Cost Mappings," Networks and Spatial Economics, Springer, vol. 17(2), pages 367-403, June.
  15. Esmaeili Aliabadi, Danial & Chan, Katrina, 2022. "The emerging threat of artificial intelligence on competition in liberalized electricity markets: A deep Q-network approach," Applied Energy, Elsevier, vol. 325(C).
  16. Feijoo, Felipe & Das, Tapas K., 2014. "Design of Pareto optimal CO2 cap-and-trade policies for deregulated electricity networks," Applied Energy, Elsevier, vol. 119(C), pages 371-383.
  17. repec:diw:diwwpp:dp1313 is not listed on IDEAS
  18. Ramandeep Kaur Bagri & Yihsu Chen, 2022. "Wildfire Modeling: Designing a Market to Restore Assets," Papers 2205.13773, arXiv.org, revised May 2025.
  19. Moritz Paulus & Johannes Trueby & Christian Growitsch, 2011. "Nations as Strategic Players in Global Commodity Markets: Evidence from World Coal Trade," EWI Working Papers 2011-4, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
  20. Juan Escobar & Alejandro Jofré, 2010. "Monopolistic competition in electricity networks with resistance losses," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 44(1), pages 101-121, July.
  21. William M. Kroshl & Shahram Sarkani & Thomas A Mazzuchi, 2015. "Efficient Allocation of Resources for Defense of Spatially Distributed Networks Using Agent‐Based Simulation," Risk Analysis, John Wiley & Sons, vol. 35(9), pages 1690-1705, September.
  22. David Csercsik, 2013. "Competition and cooperation in a PFF game theoretic model of electrical energy trade," CERS-IE WORKING PAPERS 1310, Institute of Economics, Centre for Economic and Regional Studies.
  23. Baamonde-Seoane, María A. & Carmen Calvo-Garrido, María del & Coulon, Michael & Vázquez, Carlos, 2021. "Numerical solution of a nonlinear PDE model for pricing Renewable Energy Certificates (RECs)," Applied Mathematics and Computation, Elsevier, vol. 404(C).
  24. Dávid Csercsik, 2016. "Competition and Cooperation in a Bidding Model of Electrical Energy Trade," Networks and Spatial Economics, Springer, vol. 16(4), pages 1043-1073, December.
  25. Arriet, Andrea & Matis, Timothy I. & Feijoo, Felipe, 2024. "Electricity sector impacts of water taxation for natural gas supply under high renewable generation," Energy, Elsevier, vol. 294(C).
  26. J. S. Pang, 2007. "Partially B-Regular Optimization and Equilibrium Problems," Mathematics of Operations Research, INFORMS, vol. 32(3), pages 687-699, August.
  27. Atsushi Hori & Masao Fukushima, 2019. "Gauss–Seidel Method for Multi-leader–follower Games," Journal of Optimization Theory and Applications, Springer, vol. 180(2), pages 651-670, February.
  28. Daniel Huppmann, 2013. "Endogenous Shifts in OPEC Market Power: A Stackelberg Oligopoly with Fringe," Discussion Papers of DIW Berlin 1313, DIW Berlin, German Institute for Economic Research.
  29. Makoto Tanaka, 2012. "Multi-Sector Model of Tradable Emission Permits," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(1), pages 61-77, January.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.