IDEAS home Printed from https://ideas.repec.org/r/spr/annopr/v99y2000i1p287-30410.1023-a1019279918596.html
   My bibliography  Save this item

Selecting Portfolios with Fixed Costs and Minimum Transaction Lots

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zura Kakushadze, 2015. "Combining Alphas via Bounded Regression," Papers 1501.05381, arXiv.org, revised Oct 2015.
  2. Buckley, Winston & Long, Hongwei & Marshall, Mario, 2016. "Numerical approximations of optimal portfolios in mispriced asymmetric Lévy markets," European Journal of Operational Research, Elsevier, vol. 252(2), pages 676-686.
  3. Angelelli, Enrico & Mansini, Renata & Speranza, M. Grazia, 2008. "A comparison of MAD and CVaR models with real features," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1188-1197, July.
  4. Eduardo Bered Fernandes Vieira & Tiago Pascoal Filomena, 2020. "Liquidity Constraints for Portfolio Selection Based on Financial Volume," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 1055-1077, December.
  5. Takano, Yuichi & Gotoh, Jun-ya, 2023. "Dynamic portfolio selection with linear control policies for coherent risk minimization," Operations Research Perspectives, Elsevier, vol. 10(C).
  6. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2015. "Linear vs. quadratic portfolio selection models with hard real-world constraints," Computational Management Science, Springer, vol. 12(3), pages 345-370, July.
  7. Janusz Miroforidis, 2021. "Bounds on efficient outcomes for large-scale cardinality-constrained Markowitz problems," Journal of Global Optimization, Springer, vol. 80(3), pages 617-634, July.
  8. Yu, Zuwei, 2003. "A spatial mean-variance MIP model for energy market risk analysis," Energy Economics, Elsevier, vol. 25(3), pages 255-268, May.
  9. Leal, Marina & Ponce, Diego & Puerto, Justo, 2020. "Portfolio problems with two levels decision-makers: Optimal portfolio selection with pricing decisions on transaction costs," European Journal of Operational Research, Elsevier, vol. 284(2), pages 712-727.
  10. Zhou, Zhongbao & Jin, Qianying & Xiao, Helu & Wu, Qian & Liu, Wenbin, 2018. "Estimation of cardinality constrained portfolio efficiency via segmented DEA," Omega, Elsevier, vol. 76(C), pages 28-37.
  11. Renata Mansini & Włodzimierz Ogryczak & M. Speranza, 2007. "Conditional value at risk and related linear programming models for portfolio optimization," Annals of Operations Research, Springer, vol. 152(1), pages 227-256, July.
  12. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
  13. Tiago P. Filomena & Miguel A. Lejeune, 2014. "Warm-Start Heuristic for Stochastic Portfolio Optimization with Fixed and Proportional Transaction Costs," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 308-329, April.
  14. González-Díaz, Julio & González-Rodríguez, Brais & Leal, Marina & Puerto, Justo, 2021. "Global optimization for bilevel portfolio design: Economic insights from the Dow Jones index," Omega, Elsevier, vol. 102(C).
  15. Buckley, Winston S. & Brown, Garfield O. & Marshall, Mario, 2012. "A mispricing model of stocks under asymmetric information," European Journal of Operational Research, Elsevier, vol. 221(3), pages 584-592.
  16. Raghu Nandan Sengupta & Rachit Seth & Peter Winker, 2023. "Reliability in Portfolio Optimization using Uncertain Estimates," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 199-233, May.
  17. Chun-Hao Chen & Jonathan Coupe & Tzung-Pei Hong, 2023. "An Accelerated Optimization Approach for Finding Diversified Industrial Group Stock Portfolios with Natural Group Detection," Mathematics, MDPI, vol. 11(14), pages 1-25, July.
  18. Enrico Angelelli & Renata Mansini & M. Speranza, 2012. "Kernel Search: a new heuristic framework for portfolio selection," Computational Optimization and Applications, Springer, vol. 51(1), pages 345-361, January.
  19. Kyle Steinhauer & Takahisa Fukadai & Sho Yoshida, 2020. "Solving the Optimal Trading Trajectory Problem Using Simulated Bifurcation," Papers 2009.08412, arXiv.org.
  20. Mashor Housh & Ximing Cai, 2015. "Successive smoothing algorithm for solving large-scale optimization models with fixed cost," Annals of Operations Research, Springer, vol. 229(1), pages 475-500, June.
  21. Miguel Lobo & Maryam Fazel & Stephen Boyd, 2007. "Portfolio optimization with linear and fixed transaction costs," Annals of Operations Research, Springer, vol. 152(1), pages 341-365, July.
  22. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
  23. Corazza, Marco & Favaretto, Daniela, 2007. "On the existence of solutions to the quadratic mixed-integer mean-variance portfolio selection problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1947-1960, February.
  24. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
  25. Zura Kakushadze, 2015. "Combining Alphas via Bounded Regression," Risks, MDPI, vol. 3(4), pages 1-17, November.
  26. Davide Venturelli & Alexei Kondratyev, 2018. "Reverse Quantum Annealing Approach to Portfolio Optimization Problems," Papers 1810.08584, arXiv.org, revised Oct 2018.
  27. Gili Rosenberg & Poya Haghnegahdar & Phil Goddard & Peter Carr & Kesheng Wu & Marcos L'opez de Prado, 2015. "Solving the Optimal Trading Trajectory Problem Using a Quantum Annealer," Papers 1508.06182, arXiv.org, revised Aug 2016.
  28. Lin, Chang-Chun & Liu, Yi-Ting, 2008. "Genetic algorithms for portfolio selection problems with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 185(1), pages 393-404, February.
  29. Buckley, Winston S. & Long, Hongwei, 2015. "A discontinuous mispricing model under asymmetric information," European Journal of Operational Research, Elsevier, vol. 243(3), pages 944-955.
  30. Yuichi Takano & Keisuke Nanjo & Noriyoshi Sukegawa & Shinji Mizuno, 2015. "Cutting plane algorithms for mean-CVaR portfolio optimization with nonconvex transaction costs," Computational Management Science, Springer, vol. 12(2), pages 319-340, April.
  31. Zura Kakushadze, 2014. "Notes on Alpha Stream Optimization," Papers 1406.1249, arXiv.org, revised Mar 2015.
  32. Liu, Wenbin & Zhou, Zhongbao & Liu, Debin & Xiao, Helu, 2015. "Estimation of portfolio efficiency via DEA," Omega, Elsevier, vol. 52(C), pages 107-118.
  33. Zura Kakushadze & Willie Yu, 2017. "Notes on Fano Ratio and Portfolio Optimization," Papers 1711.10640, arXiv.org, revised Apr 2018.
  34. Gianfranco Guastaroba & Renata Mansini & M. Speranza, 2009. "Models and Simulations for Portfolio Rebalancing," Computational Economics, Springer;Society for Computational Economics, vol. 33(3), pages 237-262, April.
  35. Erick Delage & Daniel Kuhn & Wolfram Wiesemann, 2019. "“Dice”-sion–Making Under Uncertainty: When Can a Random Decision Reduce Risk?," Management Science, INFORMS, vol. 65(7), pages 3282-3301, July.
  36. Ghahtarani, Alireza & Najafi, Amir Abbas, 2013. "Robust goal programming for multi-objective portfolio selection problem," Economic Modelling, Elsevier, vol. 33(C), pages 588-592.
  37. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2013. "Portfolio rebalancing with an investment horizon and transaction costs," Omega, Elsevier, vol. 41(2), pages 406-420.
  38. Zura Kakushadze, 2014. "Combining Alpha Streams with Costs," Papers 1405.4716, arXiv.org, revised Jan 2015.
  39. João Claro & Jorge Sousa, 2010. "A multiobjective metaheuristic for a mean-risk static stochastic knapsack problem," Computational Optimization and Applications, Springer, vol. 46(3), pages 427-450, July.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.