IDEAS home Printed from https://ideas.repec.org/r/gam/jsusta/v12y2020i15p5931-d388506.html
   My bibliography  Save this item

A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gang Chen & Qingchang Hu & Jin Wang & Xu Wang & Yuyu Zhu, 2023. "Machine-Learning-Based Electric Power Forecasting," Sustainability, MDPI, vol. 15(14), pages 1-21, July.
  2. Thangjam Aditya & Sanjita Jaipuria & Pradeep Kumar Dadabada, 2025. "A Review of Methods for Long‐Term Electric Load Forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(4), pages 1403-1423, July.
  3. Khadija Sherece Usher & Benjamin Craig McLellan, 2024. "Inherent Risk Analysis of Power Supply Management: Case of Belize’s System Operator and Third-Party Actors," Energies, MDPI, vol. 18(1), pages 1-35, December.
  4. Aurélie Halsband, 2022. "Sustainable AI and Intergenerational Justice," Sustainability, MDPI, vol. 14(7), pages 1-11, March.
  5. Jasiński, Tomasz, 2022. "A new approach to modeling cycles with summer and winter demand peaks as input variables for deep neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  6. Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
  7. Seyed Morteza Moghimi & Thomas Aaron Gulliver & Ilamparithi Thirumarai Chelvan & Hossen Teimoorinia, 2024. "Resource Optimization for Grid-Connected Smart Green Townhouses Using Deep Hybrid Machine Learning," Energies, MDPI, vol. 17(23), pages 1-31, December.
  8. Duong Trung Kien & Phan Dieu Huong & Nguyen Dat Minh, 2023. "Application of Sarima Model in Load Forecasting in Hanoi City," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 164-170, May.
  9. Yuyang Zhang & Lei Cui & Wenqiang Yan, 2025. "Integrating Kolmogorov–Arnold Networks with Time Series Prediction Framework in Electricity Demand Forecasting," Energies, MDPI, vol. 18(6), pages 1-18, March.
  10. Irene M. Zarco-Soto & Fco. Javier Zarco-Soto & Pedro J. Zarco-Periñán, 2021. "Influence of Population Income on Energy Consumption and CO 2 Emissions in Buildings of Cities," Sustainability, MDPI, vol. 13(18), pages 1-18, September.
  11. André Luiz Marques Serrano & Patricia Helena dos Santos Martins & Guilherme Fay Vergara & Guilherme Dantas Bispo & Gabriel Arquelau Pimenta Rodrigues & Letícia Rezende Mosquéra & Matheus Noschang de O, 2025. "Forecasting Ethanol and Gasoline Consumption in Brazil: Advanced Temporal Models for Sustainable Energy Management," Energies, MDPI, vol. 18(6), pages 1-20, March.
  12. José Ignacio García-Lajara & Miguel Ángel Reyes-Belmonte, 2022. "Liquefied Natural Gas and Hydrogen Regasification Terminal Design through Neural Network Estimated Demand for the Canary Islands," Energies, MDPI, vol. 15(22), pages 1-24, November.
  13. Khondaker Golam Moazzem & Helen Mashiyat Preoty, 2021. "Proposed Power and Energy System Master Plan (PESMP): Perspective on Analytical Frame, Methodology and Influencing Factors on Demand Forecasting," CPD Working Paper 139, Centre for Policy Dialogue (CPD).
  14. Arkadiusz Dyjakon & Łukasz Sobol & Mateusz Krotowski & Krzysztof Mudryk & Krzysztof Kawa, 2020. "The Impact of Particles Comminution on Mechanical Durability of Wheat Straw Briquettes," Energies, MDPI, vol. 13(23), pages 1-14, November.
  15. Manuel Jaramillo & Diego Carrión, 2022. "An Adaptive Strategy for Medium-Term Electricity Consumption Forecasting for Highly Unpredictable Scenarios: Case Study Quito, Ecuador during the Two First Years of COVID-19," Energies, MDPI, vol. 15(22), pages 1-19, November.
  16. Niraj Buyo & Akbar Sheikh-Akbari & Farrukh Saleem, 2025. "An Ensemble Approach to Predict a Sustainable Energy Plan for London Households," Sustainability, MDPI, vol. 17(2), pages 1-30, January.
  17. Kei Hirose & Keigo Wada & Maiya Hori & Rin-ichiro Taniguchi, 2020. "Event Effects Estimation on Electricity Demand Forecasting," Energies, MDPI, vol. 13(21), pages 1-20, November.
  18. Bhandari, Ramchandra & Subedi, Subodh, 2023. "Evaluation of surplus hydroelectricity potential in Nepal until 2040 and its use for hydrogen production via electrolysis," Renewable Energy, Elsevier, vol. 212(C), pages 403-414.
  19. Anatolijs Borodinecs & Kristina Lebedeva & Natalja Sidenko & Aleksejs Prozuments, 2022. "Enhancement of Chiller Performance by Water Distribution on the Adiabatic Cooling Pad’s Mesh Surface," Clean Technol., MDPI, vol. 4(3), pages 1-19, July.
  20. Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
  21. Sen, Doruk & Tunç, K.M. Murat & Günay, M. Erdem, 2021. "Forecasting electricity consumption of OECD countries: A global machine learning modeling approach," Utilities Policy, Elsevier, vol. 70(C).
  22. Jerzy Rembeza & Grzegorz Przekota, 2022. "Influence of the Industry’s Output on Electricity Prices: Comparison of the Nord Pool and HUPX Markets," Energies, MDPI, vol. 15(16), pages 1-15, August.
  23. Sen, Doruk & Hamurcuoglu, K. Irem & Ersoy, Melisa Z. & Tunç, K.M. Murat & Günay, M. Erdem, 2023. "Forecasting long-term world annual natural gas production by machine learning," Resources Policy, Elsevier, vol. 80(C).
  24. Mehmood, Faiza & Ghani, Muhammad Usman & Ghafoor, Hina & Shahzadi, Rehab & Asim, Muhammad Nabeel & Mahmood, Waqar, 2022. "EGD-SNet: A computational search engine for predicting an end-to-end machine learning pipeline for Energy Generation & Demand Forecasting," Applied Energy, Elsevier, vol. 324(C).
  25. Dana-Mihaela Petroșanu & Alexandru Pîrjan, 2020. "Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
  26. Bibi Ibrahim & Luis Rabelo & Edgar Gutierrez-Franco & Nicolas Clavijo-Buritica, 2022. "Machine Learning for Short-Term Load Forecasting in Smart Grids," Energies, MDPI, vol. 15(21), pages 1-19, October.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.