IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i2p500-d1564184.html
   My bibliography  Save this article

An Ensemble Approach to Predict a Sustainable Energy Plan for London Households

Author

Listed:
  • Niraj Buyo

    (School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds LS6 3QR, UK)

  • Akbar Sheikh-Akbari

    (School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds LS6 3QR, UK)

  • Farrukh Saleem

    (School of Built Environment, Engineering and Computing, Leeds Beckett University, Leeds LS6 3QR, UK)

Abstract

The energy sector plays a vital role in driving environmental and social advancements. Accurately predicting energy demand across various time frames offers numerous benefits, such as facilitating a sustainable transition and planning of energy resources. This research focuses on predicting energy consumption using three individual models: Prophet, eXtreme Gradient Boosting (XGBoost), and long short-term memory (LSTM). Additionally, it proposes an ensemble model that combines the predictions from all three to enhance overall accuracy. This approach aims to leverage the strengths of each model for better prediction performance. We examine the accuracy of an ensemble model using Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Root Mean Square Error (RMSE) through means of resource allocation. The research investigates the use of real data from smart meters gathered from 5567 London residences as part of the UK Power Networks-led Low Carbon London project from the London Datastore. The performance of each individual model was recorded as follows: 62.96% for the Prophet model, 70.37% for LSTM, and 66.66% for XGBoost. In contrast, the proposed ensemble model, which combines LSTM, Prophet, and XGBoost, achieved an impressive accuracy of 81.48%, surpassing the individual models. The findings of this study indicate that the proposed model enhances energy efficiency and supports the transition towards a sustainable energy future. Consequently, it can accurately forecast the maximum loads of distribution networks for London households. In addition, this work contributes to the improvement of load forecasting for distribution networks, which can guide higher authorities in developing sustainable energy consumption plans.

Suggested Citation

  • Niraj Buyo & Akbar Sheikh-Akbari & Farrukh Saleem, 2025. "An Ensemble Approach to Predict a Sustainable Energy Plan for London Households," Sustainability, MDPI, vol. 17(2), pages 1-30, January.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:500-:d:1564184
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/2/500/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/2/500/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farrukh Saleem & Abdullah Saad AL-Malaise AL-Ghamdi & Madini O. Alassafi & Saad Abdulla AlGhamdi, 2022. "Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review," IJERPH, MDPI, vol. 19(9), pages 1-18, April.
    2. Pannee Suanpang & Pitchaya Jamjuntr, 2024. "Machine Learning Models for Solar Power Generation Forecasting in Microgrid Application Implications for Smart Cities," Sustainability, MDPI, vol. 16(14), pages 1-29, July.
    3. Milandu Keith Moussavou Boussougou & Dong-Joo Park, 2023. "Attention-Based 1D CNN-BiLSTM Hybrid Model Enhanced with FastText Word Embedding for Korean Voice Phishing Detection," Mathematics, MDPI, vol. 11(14), pages 1-25, July.
    4. Li, Xuetao & Wang, Ziwei & Yang, Chengying & Bozkurt, Ayhan, 2024. "An advanced framework for net electricity consumption prediction: Incorporating novel machine learning models and optimization algorithms," Energy, Elsevier, vol. 296(C).
    5. Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
    6. Aneeque A. Mir & Mohammed Alghassab & Kafait Ullah & Zafar A. Khan & Yuehong Lu & Muhammad Imran, 2020. "A Review of Electricity Demand Forecasting in Low and Middle Income Countries: The Demand Determinants and Horizons," Sustainability, MDPI, vol. 12(15), pages 1-35, July.
    7. Zhoufan Chen & Congmin Wang & Longjin Lv & Liangzhong Fan & Shiting Wen & Zhengtao Xiang, 2023. "Research on Peak Load Prediction of Distribution Network Lines Based on Prophet-LSTM Model," Sustainability, MDPI, vol. 15(15), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pruethsan Sutthichaimethee & Worawat Sa-Ngiamvibool & Buncha Wattana & Jianhui Luo & Supannika Wattana, 2025. "Enhancing Sustainable Strategic Governance for Energy-Consumption Reduction Towards Carbon Neutrality in the Energy and Transportation Sectors," Sustainability, MDPI, vol. 17(6), pages 1-24, March.
    2. Muratkan Madiyarov & Nurlana Alimbekova & Aibek Bakishev & Gabit Mukhamediyev & Yerlan Yergaliyev, 2025. "Nonlocal Modeling and Inverse Parameter Estimation of Time-Varying Vehicular Emissions in Urban Pollution Dynamics," Mathematics, MDPI, vol. 13(17), pages 1-26, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramos, Paulo Vitor B. & Villela, Saulo Moraes & Silva, Walquiria N. & Dias, Bruno H., 2023. "Residential energy consumption forecasting using deep learning models," Applied Energy, Elsevier, vol. 350(C).
    2. Ercan Köse & Sevil Kutlu Kaynar, 2025. "Energy Demand Forecasting and Policy Development in Turkey," Energies, MDPI, vol. 18(13), pages 1-31, June.
    3. Duaa Ashtar & Seyed Sahand Mohammadi Ziabari & Ali Mohammed Mansoor Alsahag, 2025. "Hybrid Forecasting for Sustainable Electricity Demand in The Netherlands Using SARIMAX, SARIMAX-LSTM, and Sequence-to-Sequence Deep Learning Models," Sustainability, MDPI, vol. 17(16), pages 1-22, August.
    4. Sheng Du & Li Jin & Zixin Huang & Xiongbo Wan, 2025. "Recent Progress in Hybrid Intelligent Modeling Technology and Optimization Strategy for Industrial Energy Consumption Processes," Energies, MDPI, vol. 18(8), pages 1-6, April.
    5. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    6. Liu, Shuhan & Sun, Wenqiang, 2025. "Knowledge- and data-driven prediction of blast furnace gas generation and consumption in iron and steel sites," Applied Energy, Elsevier, vol. 390(C).
    7. Suya Jin & Guiyan Liu & Qifeng Bai, 2023. "Deep Learning in COVID-19 Diagnosis, Prognosis and Treatment Selection," Mathematics, MDPI, vol. 11(6), pages 1-16, March.
    8. Semmelmann, Leo & Hertel, Matthias & Kircher, Kevin J. & Mikut, Ralf & Hagenmeyer, Veit & Weinhardt, Christof, 2024. "The impact of heat pumps on day-ahead energy community load forecasting," Applied Energy, Elsevier, vol. 368(C).
    9. Minan Tang & Changyou Wang & Jiandong Qiu & Hanting Li & Xi Guo & Wenxin Sheng, 2024. "Short-Term Load Forecasting of Electric Vehicle Charging Stations Accounting for Multifactor IDBO Hybrid Models," Energies, MDPI, vol. 17(12), pages 1-19, June.
    10. Marco G. Pinheiro & Sara C. Madeira & Alexandre P. Francisco, 2022. "Shapelets to Classify Energy Demand Time Series," Energies, MDPI, vol. 15(8), pages 1-17, April.
    11. Bhandari, Ramchandra & Subedi, Subodh, 2023. "Evaluation of surplus hydroelectricity potential in Nepal until 2040 and its use for hydrogen production via electrolysis," Renewable Energy, Elsevier, vol. 212(C), pages 403-414.
    12. Wenhui Zhao & Tong Li & Danyang Xu & Zhaohua Wang, 2024. "A global forecasting method of heterogeneous household short-term load based on pre-trained autoencoder and deep-LSTM model," Annals of Operations Research, Springer, vol. 339(1), pages 227-259, August.
    13. Manuel Jaramillo & Diego Carrión, 2022. "An Adaptive Strategy for Medium-Term Electricity Consumption Forecasting for Highly Unpredictable Scenarios: Case Study Quito, Ecuador during the Two First Years of COVID-19," Energies, MDPI, vol. 15(22), pages 1-19, November.
    14. Kei Hirose & Keigo Wada & Maiya Hori & Rin-ichiro Taniguchi, 2020. "Event Effects Estimation on Electricity Demand Forecasting," Energies, MDPI, vol. 13(21), pages 1-20, November.
    15. Ruixiang Zhang & Ziyu Zhu & Meng Yuan & Yihan Guo & Jie Song & Xuanxuan Shi & Yu Wang & Yaojie Sun, 2023. "Regional Residential Short-Term Load-Interval Forecasting Based on SSA-LSTM and Load Consumption Consistency Analysis," Energies, MDPI, vol. 16(24), pages 1-17, December.
    16. Bibi Ibrahim & Luis Rabelo & Edgar Gutierrez-Franco & Nicolas Clavijo-Buritica, 2022. "Machine Learning for Short-Term Load Forecasting in Smart Grids," Energies, MDPI, vol. 15(21), pages 1-19, October.
    17. Duong Trung Kien & Phan Dieu Huong & Nguyen Dat Minh, 2023. "Application of Sarima Model in Load Forecasting in Hanoi City," International Journal of Energy Economics and Policy, Econjournals, vol. 13(3), pages 164-170, May.
    18. Yuyang Zhang & Lei Cui & Wenqiang Yan, 2025. "Integrating Kolmogorov–Arnold Networks with Time Series Prediction Framework in Electricity Demand Forecasting," Energies, MDPI, vol. 18(6), pages 1-18, March.
    19. Yu, Hanxin & Chen, Shanlin & Chu, Yinghao & Li, Mengying & Ding, Yueming & Cui, Rongxi & Zhao, Xin, 2024. "Self-attention mechanism to enhance the generalizability of data-driven time-series prediction: A case study of intra-hour power forecasting of urban distributed photovoltaic systems," Applied Energy, Elsevier, vol. 374(C).
    20. Said Benkaciali & Gilles Notton & Cyril Voyant, 2025. "Comparative Study of Feature Selection Techniques for Machine Learning-Based Solar Irradiation Forecasting to Facilitate the Sustainable Development of Photovoltaics: Application to Algerian Climatic ," Sustainability, MDPI, vol. 17(14), pages 1-28, July.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:2:p:500-:d:1564184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.