IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i9p5099-d799529.html
   My bibliography  Save this article

Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review

Author

Listed:
  • Farrukh Saleem

    (Department of Information System, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Abdullah Saad AL-Malaise AL-Ghamdi

    (Department of Information System, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Madini O. Alassafi

    (Department of Information Technology, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Saad Abdulla AlGhamdi

    (Ministry of Health, King Abdulaziz Hospital, Jeddah 22421, Saudi Arabia)

Abstract

COVID-19 is a disease caused by SARS-CoV-2 and has been declared a worldwide pandemic by the World Health Organization due to its rapid spread. Since the first case was identified in Wuhan, China, the battle against this deadly disease started and has disrupted almost every field of life. Medical staff and laboratories are leading from the front, but researchers from various fields and governmental agencies have also proposed healthy ideas to protect each other. In this article, a Systematic Literature Review (SLR) is presented to highlight the latest developments in analyzing the COVID-19 data using machine learning and deep learning algorithms. The number of studies related to Machine Learning (ML), Deep Learning (DL), and mathematical models discussed in this research has shown a significant impact on forecasting and the spread of COVID-19. The results and discussion presented in this study are based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Out of 218 articles selected at the first stage, 57 met the criteria and were included in the review process. The findings are therefore associated with those 57 studies, which recorded that CNN (DL) and SVM (ML) are the most used algorithms for forecasting, classification, and automatic detection. The importance of the compartmental models discussed is that the models are useful for measuring the epidemiological features of COVID-19. Current findings suggest that it will take around 1.7 to 140 days for the epidemic to double in size based on the selected studies. The 12 estimates for the basic reproduction range from 0 to 7.1. The main purpose of this research is to illustrate the use of ML, DL, and mathematical models that can be helpful for the researchers to generate valuable solutions for higher authorities and the healthcare industry to reduce the impact of this epidemic.

Suggested Citation

  • Farrukh Saleem & Abdullah Saad AL-Malaise AL-Ghamdi & Madini O. Alassafi & Saad Abdulla AlGhamdi, 2022. "Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review," IJERPH, MDPI, vol. 19(9), pages 1-18, April.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5099-:d:799529
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/9/5099/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/9/5099/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto Vega & Leonardo Flores & Russell Greiner, 2022. "SIMLR: Machine Learning inside the SIR Model for COVID-19 Forecasting," Forecasting, MDPI, vol. 4(1), pages 1-23, January.
    2. Yadav, Milind & Perumal, Murukessan & Srinivas, M, 2020. "Analysis on novel coronavirus (COVID-19) using machine learning methods," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Zeroual, Abdelhafid & Harrou, Fouzi & Dairi, Abdelkader & Sun, Ying, 2020. "Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    4. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shiyang Lyu & Oyelola Adegboye & Kiki Adhinugraha & Theophilus I. Emeto & David Taniar, 2023. "Unlocking Insights: Analysing COVID-19 Lockdown Policies and Mobility Data in Victoria, Australia, through a Data-Driven Machine Learning Approach," Data, MDPI, vol. 9(1), pages 1-20, December.
    2. Suya Jin & Guiyan Liu & Qifeng Bai, 2023. "Deep Learning in COVID-19 Diagnosis, Prognosis and Treatment Selection," Mathematics, MDPI, vol. 11(6), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yong-Ju Jang & Min-Seung Kim & Chan-Ho Lee & Ji-Hye Choi & Jeong-Hee Lee & Sun-Hong Lee & Tae-Eung Sung, 2022. "A Novel Approach on Deep Learning—Based Decision Support System Applying Multiple Output LSTM-Autoencoder: Focusing on Identifying Variations by PHSMs’ Effect over COVID-19 Pandemic," IJERPH, MDPI, vol. 19(11), pages 1-22, June.
    2. Rasheed, Jawad & Jamil, Akhtar & Hameed, Alaa Ali & Aftab, Usman & Aftab, Javaria & Shah, Syed Attique & Draheim, Dirk, 2020. "A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    4. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    5. Masum, Mohammad & Masud, M.A. & Adnan, Muhaiminul Islam & Shahriar, Hossain & Kim, Sangil, 2022. "Comparative study of a mathematical epidemic model, statistical modeling, and deep learning for COVID-19 forecasting and management," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    6. Das, Saikat & Bose, Indranil & Sarkar, Uttam Kumar, 2023. "Predicting the outbreak of epidemics using a network-based approach," European Journal of Operational Research, Elsevier, vol. 309(2), pages 819-831.
    7. Xiaojin Xie & Kangyang Luo & Zhixiang Yin & Guoqiang Wang, 2021. "Nonlinear Combinational Dynamic Transmission Rate Model and Its Application in Global COVID-19 Epidemic Prediction and Analysis," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    8. Huang, Chiou-Jye & Shen, Yamin & Kuo, Ping-Huan & Chen, Yung-Hsiang, 2022. "Novel spatiotemporal feature extraction parallel deep neural network for forecasting confirmed cases of coronavirus disease 2019," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    9. Faizeh Hatami & Shi Chen & Rajib Paul & Jean-Claude Thill, 2022. "Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    10. Iloanusi, Ogechukwu & Ross, Arun, 2021. "Leveraging weather data for forecasting cases-to-mortality rates due to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    11. Medeiros, Marcelo C. & Street, Alexandre & Valladão, Davi & Vasconcelos, Gabriel & Zilberman, Eduardo, 2022. "Short-term Covid-19 forecast for latecomers," International Journal of Forecasting, Elsevier, vol. 38(2), pages 467-488.
    12. Begüm Ulusoy & Rengin Aslanoğlu, 2022. "Transforming Residential Interiors into Workspaces during the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(13), pages 1-13, July.
    13. Faik Bilgili & Emrah Koçak & Sevda Kuşkaya, 2023. "Dynamics and Co-movements Between the COVID-19 Outbreak and the Stock Market in Latin American Countries: An Evaluation Based on the Wavelet-Partial Wavelet Coherence Model," Evaluation Review, , vol. 47(4), pages 630-652, August.
    14. Khan, Junaid Iqbal & Ullah, Farman & Lee, Sungchang, 2022. "Attention based parameter estimation and states forecasting of COVID-19 pandemic using modified SIQRD Model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    15. Schaum, A. & Bernal-Jaquez, R. & Alarcon Ramos, L., 2022. "Data-assimilation and state estimation for contact-based spreading processes using the ensemble kalman filter: Application to COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 157(C).
    16. Jacques Bughin & Michele Cincera & Dorota Reykowska & Rafal Ohme, 2021. "Big Data is Decision Science: the Case of Covid-19 Vaccination," Working Papers TIMES² 2021-047, ULB -- Universite Libre de Bruxelles.
    17. Yongchao Jin & Renfang Wang & Xiaodie Zhuang & Kenan Wang & Honglian Wang & Chenxi Wang & Xiyin Wang, 2022. "Prediction of COVID-19 Data Using an ARIMA-LSTM Hybrid Forecast Model," Mathematics, MDPI, vol. 10(21), pages 1-13, October.
    18. Christian Acal & Manuel Escabias & Ana M. Aguilera & Mariano J. Valderrama, 2021. "COVID-19 Data Imputation by Multiple Function-on-Function Principal Component Regression," Mathematics, MDPI, vol. 9(11), pages 1-23, May.
    19. Shruti Sharma & Yogesh Kumar Gupta & Abhinava K. Mishra, 2023. "Analysis and Prediction of COVID-19 Multivariate Data Using Deep Ensemble Learning Methods," IJERPH, MDPI, vol. 20(11), pages 1-23, May.
    20. Antoni Wiliński & Łukasz Kupracz & Aneta Senejko & Grzegorz Chrząstek, 2022. "COVID-19: average time from infection to death in Poland, USA, India and Germany," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(6), pages 4729-4746, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5099-:d:799529. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.