IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v139y2020ics0960077920304471.html
   My bibliography  Save this article

Analysis on novel coronavirus (COVID-19) using machine learning methods

Author

Listed:
  • Yadav, Milind
  • Perumal, Murukessan
  • Srinivas, M

Abstract

In this paper, we are working on a pandemic of novel coronavirus (COVID-19). COVID-19 is an infectious disease, it creates severe damage in the lungs. COVID-19 causes illness in humans and has killed many people in the entire world. However, this virus is reported as a pandemic by the World Health Organization (WHO) and all countries are trying to control and lockdown all places. The main objective of this work is to solve the five different tasks such as I) Predicting the spread of coronavirus across regions. II) Analyzing the growth rates and the types of mitigation across countries. III) Predicting how the epidemic will end. IV) Analyzing the transmission rate of the virus. V) Correlating the coronavirus and weather conditions. The advantage of doing these tasks to minimize the virus spread by various mitigation, how well the mitigations are working, how many cases have been prevented by this mitigations, an idea about the number of patients that will recover from the infection with old medication, understand how much time will it take to for this pandemic to end, we will be able to understand and analyze how fast or slow the virus is spreading among regions and the infected patient to reduce the spread based clear understanding of the correlation between the spread and weather conditions. In this paper, we propose a novel Support Vector Regression method to analysis five different tasks related to novel coronavirus. In this work, instead of simple regression line we use the supported vectors also to get better classification accuracy. Our approach is evaluated and compared with other well-known regression models on standard available datasets. The promising results demonstrate its superiority in both efficiency and accuracy.

Suggested Citation

  • Yadav, Milind & Perumal, Murukessan & Srinivas, M, 2020. "Analysis on novel coronavirus (COVID-19) using machine learning methods," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304471
    DOI: 10.1016/j.chaos.2020.110050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920304471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rasheed, Jawad & Jamil, Akhtar & Hameed, Alaa Ali & Aftab, Usman & Aftab, Javaria & Shah, Syed Attique & Draheim, Dirk, 2020. "A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    2. Farrukh Saleem & Abdullah Saad AL-Malaise AL-Ghamdi & Madini O. Alassafi & Saad Abdulla AlGhamdi, 2022. "Machine Learning, Deep Learning, and Mathematical Models to Analyze Forecasting and Epidemiology of COVID-19: A Systematic Literature Review," IJERPH, MDPI, vol. 19(9), pages 1-18, April.
    3. Jacques Bughin & Michele Cincera & Dorota Reykowska & Rafal Ohme, 2021. "Big data is decision science: The case of COVID-19 vaccination," ULB Institutional Repository 2013/342494, ULB -- Universite Libre de Bruxelles.
    4. Begüm Ulusoy & Rengin Aslanoğlu, 2022. "Transforming Residential Interiors into Workspaces during the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(13), pages 1-13, July.
    5. Ballı, Serkan, 2021. "Data analysis of Covid-19 pandemic and short-term cumulative case forecasting using machine learning time series methods," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    7. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:139:y:2020:i:c:s0960077920304471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.