IDEAS home Printed from https://ideas.repec.org/r/eee/transb/v46y2012i6p729-743.html
   My bibliography  Save this item

Accommodating multiple constraints in the multiple discrete–continuous extreme value (MDCEV) choice model

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Chandra Bhat & Abdul Pinjari, 2014. "Multiple discrete-continuous choice models: a reflective analysis and a prospective view," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 19, pages 427-454, Edward Elgar Publishing.
  2. Astroza, Sebastian & Bhat, Prerna C. & Bhat, Chandra R. & Pendyala, Ram M. & Garikapati, Venu M., 2018. "Understanding activity engagement across weekdays and weekend days: A multivariate multiple discrete-continuous modeling approach," Journal of choice modelling, Elsevier, vol. 28(C), pages 56-70.
  3. Jara-Díaz, Sergio R. & Astroza, Sebastian & Bhat, Chandra R. & Castro, Marisol, 2016. "Introducing relations between activities and goods consumption in microeconomic time use models," Transportation Research Part B: Methodological, Elsevier, vol. 93(PA), pages 162-180.
  4. Bhat, Chandra R., 2018. "A new flexible multiple discrete–continuous extreme value (MDCEV) choice model," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 261-279.
  5. Jian, Sisi & Rashidi, Taha Hossein & Dixit, Vinayak, 2017. "An analysis of carsharing vehicle choice and utilization patterns using multiple discrete-continuous extreme value (MDCEV) models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 362-376.
  6. Fu, Xuemei & Juan, Zhicai, 2017. "Exploring the psychosocial factors associated with public transportation usage and examining the “gendered” difference," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 70-82.
  7. Pellegrini, Andrea & Pinjari, Abdul Rawoof & Maggi, Rico, 2021. "A multiple discrete continuous model of time use that accommodates non-additively separable utility functions along with time and monetary budget constraints," Transportation Research Part A: Policy and Practice, Elsevier, vol. 144(C), pages 37-53.
  8. Sikder, Sujan & Pinjari, Abdul Rawoof, 2013. "The benefits of allowing heteroscedastic stochastic distributions in multiple discrete-continuous choice models," Journal of choice modelling, Elsevier, vol. 9(C), pages 39-56.
  9. Jara-Díaz, Sergio & Rosales-Salas, Jorge, 2017. "Beyond transport time: A review of time use modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 209-230.
  10. Sabreena Anowar & Naveen Eluru & Luis F. Miranda-Moreno, 2018. "How household transportation expenditures have evolved in Canada: a long term perspective," Transportation, Springer, vol. 45(5), pages 1297-1317, September.
  11. Xie, Lusi & Lloyd-Smith, Patrick & Adamowicz, Wiktor L., 2018. "Changes in spatial and temporal substitution patterns of hunting activities caused by Chronic Wasting Disease (CWD): Evidence from Alberta, Canada," 2018 Annual Meeting, August 5-7, Washington, D.C. 274025, Agricultural and Applied Economics Association.
  12. Saxena, Shobhit & Pinjari, Abdul Rawoof & Paleti, Rajesh, 2022. "A multiple discrete-continuous extreme value model with ordered preferences (MDCEV-OP): Modelling framework for episode-level activity participation and time-use analysis," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 259-283.
  13. Chandra R. Bhat & Subodh K. Dubey & Mohammad Jobair Bin Alam & Waleed H. Khushefati, 2015. "A New Spatial Multiple Discrete-Continuous Modeling Approach To Land Use Change Analysis," Journal of Regional Science, Wiley Blackwell, vol. 55(5), pages 801-841, November.
  14. Calastri, Chiara & Giergiczny, Marek & Zedrosser, Andreas & Hess, Stephane, 2023. "Modelling activity patterns of wild animals - An application of the multiple discrete-continuous extreme value (MDCEV) model," Journal of choice modelling, Elsevier, vol. 47(C).
  15. Calastri, Chiara & Hess, Stephane & Daly, Andrew & Carrasco, Juan Antonio, 2017. "Does the social context help with understanding and predicting the choice of activity type and duration? An application of the Multiple Discrete-Continuous Nested Extreme Value model to activity diary," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 1-20.
  16. Jara-Díaz, Sergio & Candia, Diego, 2020. "A new look at the value of leisure in two-worker households," Economics of Transportation, Elsevier, vol. 24(C).
  17. Chiara Calastri & Jacek Pawlak & Richard Batley, 2022. "Participation in online activities while travelling: an application of the MDCEV model in the context of rail travel," Transportation, Springer, vol. 49(1), pages 61-87, February.
  18. Héctor López-Ospina & Francisco Martínez & Cristián Cortés, 2015. "A time-hierarchical microeconomic model of activities," Transportation, Springer, vol. 42(2), pages 211-236, March.
  19. Gosens, Tom & Rouwendal, Jan, 2018. "Nature-based outdoor recreation trips: Duration, travel mode and location," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 513-530.
  20. Reinhard Hössinger & Florian Aschauer & Sergio Jara-Díaz & Simona Jokubauskaite & Basil Schmid & Stefanie Peer & Kay W. Axhausen & Regine Gerike, 2020. "A joint time-assignment and expenditure-allocation model: value of leisure and value of time assigned to travel for specific population segments," Transportation, Springer, vol. 47(3), pages 1439-1475, June.
  21. La Paix Puello, Lissy & Chowdhury, Saidul & Geurs, Karst, 2019. "Using panel data for modelling duration dynamics of outdoor leisure activities," Journal of choice modelling, Elsevier, vol. 31(C), pages 141-155.
  22. Kuriyama, Koichi & Shoji, Yasushi & Tsuge, Takahiro, 2020. "The value of leisure time of weekends and long holidays: The multiple discrete–continuous extreme value (MDCEV) choice model with triple constraints," Journal of choice modelling, Elsevier, vol. 37(C).
  23. Astroza, Sebastian & Pinjari, Abdul & Bhat, Chandra & Jara-Diaz, Sergio, 2017. "A Microeconomic Theory–Based Latent Class Multiple Discrete–Continuous Choice Model of Time Use and Goods Consumption," MPRA Paper 92574, University Library of Munich, Germany.
  24. Hössinger, Reinhard & Link, Christoph & Sonntag, Axel & Stark, Juliane, 2017. "Estimating the price elasticity of fuel demand with stated preferences derived from a situational approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 154-171.
  25. Andrea Pellegrini & Igor Sarman & Rico Maggi, 2021. "Understanding tourists’ expenditure patterns: a stochastic frontier approach within the framework of multiple discrete–continuous choices," Transportation, Springer, vol. 48(2), pages 931-951, April.
  26. Lu, Hui & Hess, Stephane & Daly, Andrew & Rohr, Charlene, 2017. "Measuring the impact of alcohol multi-buy promotions on consumers' purchase behaviour," Journal of choice modelling, Elsevier, vol. 24(C), pages 75-95.
  27. Pinjari, Abdul Rawoof & Bhat, Chandra, 2021. "Computationally efficient forecasting procedures for Kuhn-Tucker consumer demand model systems: Application to residential energy consumption analysis," Journal of choice modelling, Elsevier, vol. 39(C).
  28. Lai, Xinjun & Lam, William H.K. & Su, Junbiao & Fu, Hui, 2019. "Modelling intra-household interactions in time-use and activity patterns of retired and dual-earner couples," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 172-194.
  29. Xie, Lusi & Adamowicz, Wiktor & Lloyd-Smith, Patrick, 2023. "Spatial and temporal responses to incentives: An application to wildlife disease management," Journal of Environmental Economics and Management, Elsevier, vol. 117(C).
  30. Sanghak Lee & Sunghoon Kim & Sungho Park, 2022. "A sequential choice model for multiple discrete demand," Quantitative Marketing and Economics (QME), Springer, vol. 20(2), pages 141-178, June.
  31. Mondal, Aupal & Bhat, Chandra R., 2021. "A new closed form multiple discrete-continuous extreme value (MDCEV) choice model with multiple linear constraints," Transportation Research Part B: Methodological, Elsevier, vol. 147(C), pages 42-66.
  32. Pinjari, Abdul Rawoof & Augustin, Bertho & Sivaraman, Vijayaraghavan & Faghih Imani, Ahmadreza & Eluru, Naveen & Pendyala, Ram M., 2016. "Stochastic frontier estimation of budgets for Kuhn–Tucker demand systems: Application to activity time-use analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 117-133.
  33. Jokubauskaitė, Simona & Hössinger, Reinhard & Aschauer, Florian & Gerike, Regine & Jara-Díaz, Sergio & Peer, Stefanie & Schmid, Basil & Axhausen, Kay W. & Leisch, Friedrich, 2019. "Advanced continuous-discrete model for joint time-use expenditure and mode choice estimation," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 397-421.
  34. Hung Tran & Tien Mai, 2023. "Network-based Representations and Dynamic Discrete Choice Models for Multiple Discrete Choice Analysis," Papers 2306.04606, arXiv.org.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.