IDEAS home Printed from https://ideas.repec.org/r/eee/transa/v45y2011i9p896-915.html
   My bibliography  Save this item

Modeling heterogeneous risk-taking behavior in route choice: A stochastic dominance approach

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bi Chen & William Lam & Agachai Sumalee & Qingquan Li & Hu Shao & Zhixiang Fang, 2013. "Finding Reliable Shortest Paths in Road Networks Under Uncertainty," Networks and Spatial Economics, Springer, vol. 13(2), pages 123-148, June.
  2. Anny B. Wang & W. Y. Szeto, 2020. "Bounding the Inefficiency of the Reliability-Based Continuous Network Design Problem Under Cost Recovery," Networks and Spatial Economics, Springer, vol. 20(2), pages 395-422, June.
  3. Teppei Kato & Kenetsu Uchida & William H. K. Lam & Agachai Sumalee, 2021. "Estimation of the value of travel time and of travel time reliability for heterogeneous drivers in a road network," Transportation, Springer, vol. 48(4), pages 1639-1670, August.
  4. Zhang, Yuli & Max Shen, Zuo-Jun & Song, Shiji, 2017. "Lagrangian relaxation for the reliable shortest path problem with correlated link travel times," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 501-521.
  5. Zhaoqi Zang & Richard Batley & Xiangdong Xu & David Z. W. Wang, 2022. "On the value of distribution tail in the valuation of travel time variability," Papers 2207.06293, arXiv.org, revised Dec 2023.
  6. Chen, Bi Yu & Lam, William H.K. & Sumalee, Agachai & Li, Qingquan & Li, Zhi-Chun, 2012. "Vulnerability analysis for large-scale and congested road networks with demand uncertainty," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(3), pages 501-516.
  7. Wang, Shenhao & Zhao, Jinhua, 2019. "Risk preference and adoption of autonomous vehicles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 215-229.
  8. Wu, Xing, 2015. "Study on mean-standard deviation shortest path problem in stochastic and time-dependent networks: A stochastic dominance based approach," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 275-290.
  9. Chen, Bi Yu & Li, Qingquan & Lam, William H.K., 2016. "Finding the k reliable shortest paths under travel time uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 189-203.
  10. Zhaoqi Zang & Xiangdong Xu & Kai Qu & Ruiya Chen & Anthony Chen, 2022. "Travel time reliability in transportation networks: A review of methodological developments," Papers 2206.12696, arXiv.org, revised Jul 2022.
  11. Redmond, Michael & Campbell, Ann Melissa & Ehmke, Jan Fabian, 2022. "Reliability in public transit networks considering backup itineraries," European Journal of Operational Research, Elsevier, vol. 300(3), pages 852-864.
  12. Xu, Xiangdong & Chen, Anthony & Cheng, Lin & Yang, Chao, 2017. "A link-based mean-excess traffic equilibrium model under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 53-75.
  13. Amirgholy, Mahyar & Gonzales, Eric J., 2017. "Efficient frontier of route choice for modeling the equilibrium under travel time variability with heterogeneous traveler preferences," Economics of Transportation, Elsevier, vol. 11, pages 1-14.
  14. Uchida, Kenetsu, 2014. "Estimating the value of travel time and of travel time reliability in road networks," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 129-147.
  15. Roberto Cominetti & Alfredo Torrico, 2016. "Additive Consistency of Risk Measures and Its Application to Risk-Averse Routing in Networks," Mathematics of Operations Research, INFORMS, vol. 41(4), pages 1510-1521, November.
  16. Yu Nie & Xing Wu & Tito Homem-de-Mello, 2012. "Optimal Path Problems with Second-Order Stochastic Dominance Constraints," Networks and Spatial Economics, Springer, vol. 12(4), pages 561-587, December.
  17. Xiangfeng Ji & Xiaoyu Ao, 2021. "Travelers’ Bi-Attribute Decision Making on the Risky Mode Choice with Flow-Dependent Salience Theory," Sustainability, MDPI, vol. 13(7), pages 1-24, April.
  18. E. Nikolova & N. E. Stier-Moses, 2014. "A Mean-Risk Model for the Traffic Assignment Problem with Stochastic Travel Times," Operations Research, INFORMS, vol. 62(2), pages 366-382, April.
  19. Yang, Lixing & Zhou, Xuesong, 2017. "Optimizing on-time arrival probability and percentile travel time for elementary path finding in time-dependent transportation networks: Linear mixed integer programming reformulations," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 68-91.
  20. Zhang, Yuli & Shen, Zuo-Jun Max & Song, Shiji, 2016. "Parametric search for the bi-attribute concave shortest path problem," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 150-168.
  21. Tan, Zhijia & Yang, Hai & Guo, Renyong, 2014. "Pareto efficiency of reliability-based traffic equilibria and risk-taking behavior of travelers," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 16-31.
  22. Zhang, Yufeng & Khani, Alireza, 2019. "An algorithm for reliable shortest path problem with travel time correlations," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 92-113.
  23. Nie, Yu (Marco) & Wu, Xing & Dillenburg, John F. & Nelson, Peter C., 2012. "Reliable route guidance: A case study from Chicago," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(2), pages 403-419.
  24. Xiangfeng Ji & Xuegang (Jeff) Ban & Mengtian Li & Jian Zhang & Bin Ran, 2017. "Non-expected Route Choice Model under Risk on Stochastic Traffic Networks," Networks and Spatial Economics, Springer, vol. 17(3), pages 777-807, September.
  25. Qinghui Xu & Xiangfeng Ji, 2020. "User Equilibrium Analysis Considering Travelers’ Context-Dependent Route Choice Behavior on the Risky Traffic Network," Sustainability, MDPI, vol. 12(17), pages 1-25, August.
  26. Zhang, Yu & Tang, Jiafu, 2018. "Itinerary planning with time budget for risk-averse travelers," European Journal of Operational Research, Elsevier, vol. 267(1), pages 288-303.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.