IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v81y2018ip2p3186-3214.html
   My bibliography  Save this item

Review of hydrogen production using chemical-looping technology

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
  2. Chisalita, Dora-Andreea & Cormos, Calin-Cristian, 2019. "Techno-economic assessment of hydrogen production processes based on various natural gas chemical looping systems with carbon capture," Energy, Elsevier, vol. 181(C), pages 331-344.
  3. Liu, Yiyuan & Zhu, Qunzhi & Zhang, Tao & Yan, Xuefeng & Duan, Rui, 2020. "Analysis of chemical-looping hydrogen production and power generation system driven by solar energy," Renewable Energy, Elsevier, vol. 154(C), pages 863-874.
  4. Tomasz Czakiert & Jaroslaw Krzywanski & Anna Zylka & Wojciech Nowak, 2022. "Chemical Looping Combustion: A Brief Overview," Energies, MDPI, vol. 15(4), pages 1-19, February.
  5. Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).
  6. Pan, Qinghuan & Ma, Liping & Du, Wang & Yang, Jie & Ao, Ran & Yin, Xia & Qing, Sancheng, 2022. "Hydrogen-enriched syngas production by lignite chemical looping gasification with composite oxygen carriers of phosphogypsum and steel slag," Energy, Elsevier, vol. 241(C).
  7. Elena David, 2020. "Evaluation of Hydrogen Yield Evolution in Gaseous Fraction and Biochar Structure Resulting from Walnut Shells Pyrolysis," Energies, MDPI, vol. 13(23), pages 1-17, December.
  8. Nguyen, Nhut M. & Alobaid, Falah & Epple, Bernd, 2021. "Chemical looping gasification of torrefied woodchips in a bubbling fluidized bed test rig using iron-based oxygen carriers," Renewable Energy, Elsevier, vol. 172(C), pages 34-45.
  9. Turap, Yusan & Wang, Zhentong & Wang, Yidi & Zhang, Zhe & Chen, Siyuan & Wang, Wei, 2023. "High purity hydrogen production via coupling CO2 reforming of biomass-derived gas and chemical looping water splitting," Applied Energy, Elsevier, vol. 331(C).
  10. Situmorang, Yohanes Andre & Zhao, Zhongkai & An, Ping & Yu, Tao & Rizkiana, Jenny & Abudula, Abuliti & Guan, Guoqing, 2020. "A novel system of biomass-based hydrogen production by combining steam bio-oil reforming and chemical looping process," Applied Energy, Elsevier, vol. 268(C).
  11. Huang, Jijiang & Liu, Wen & Hu, Wenting & Metcalfe, Ian & Yang, Yanhui & Liu, Bin, 2019. "Phase interactions in Ni-Cu-Al2O3 mixed oxide oxygen carriers for chemical looping applications," Applied Energy, Elsevier, vol. 236(C), pages 635-647.
  12. Chisalita, Dora-Andreea & Petrescu, Letitia & Cormos, Calin-Cristian, 2020. "Environmental evaluation of european ammonia production considering various hydrogen supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
  13. Newby, Richard A. & Keairns, Dale L. & Stevens, Robert W., 2023. "Chemical looping combustion oxygen carrier production cost study," Applied Energy, Elsevier, vol. 345(C).
  14. Zain, Munirah Md & Mohamed, Abdul Rahman, 2018. "An overview on conversion technologies to produce value added products from CH4 and CO2 as major biogas constituents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 56-63.
  15. Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
  16. Baroutaji, Ahmad & Wilberforce, Tabbi & Ramadan, Mohamad & Olabi, Abdul Ghani, 2019. "Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 31-40.
  17. Chein, Rei-Yu & Hsu, Wen-Huai, 2019. "Thermodynamic analysis of syngas production via chemical looping dry reforming of methane," Energy, Elsevier, vol. 180(C), pages 535-547.
  18. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  19. Jiang, Dianqiang & Zhang, Dalin & Li, Xinyu & Wang, Shibao & Wang, Chenglong & Qin, Hao & Guo, Yanwen & Tian, Wenxi & Su, G.H. & Qiu, Suizheng, 2022. "Fluoride-salt-cooled high-temperature reactors: Review of historical milestones, research status, challenges, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  20. Nurdiawati, Anissa & Zaini, Ilman Nuran & Irhamna, Adrian Rizqi & Sasongko, Dwiwahju & Aziz, Muhammad, 2019. "Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 369-381.
  21. Lachén, J. & Herguido, J. & Peña, J.A., 2020. "High purity hydrogen from biogas via steam iron process: Preventing reactor clogging by interspersed coke combustions," Renewable Energy, Elsevier, vol. 151(C), pages 619-626.
  22. Aghaie, Mahsa & Rezaei, Nima & Zendehboudi, Sohrab, 2018. "A systematic review on CO2 capture with ionic liquids: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 502-525.
  23. Almaktar, Mohamed & Shaaban, Mohamed, 2021. "Prospects of renewable energy as a non-rivalry energy alternative in Libya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
  24. Wang, Xun & Fu, Genshen & Xiao, Bo & Xu, Tingting, 2022. "Optimization of nickel-iron bimetallic oxides for coproduction of hydrogen and syngas in chemical looping reforming with water splitting process," Energy, Elsevier, vol. 246(C).
  25. Surywanshi, Gajanan Dattarao & Patnaikuni, Venkata Suresh & Vooradi, Ramsagar & Anne, Sarath Babu, 2021. "4-E and life cycle analyses of a supercritical coal direct chemical looping combustion power plant with hydrogen and power co-generation," Energy, Elsevier, vol. 217(C).
  26. Antzaras, Andy N. & Lemonidou, Angeliki A., 2022. "Recent advances on materials and processes for intensified production of blue hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  27. Ochoa, Aitor & Bilbao, Javier & Gayubo, Ana G. & Castaño, Pedro, 2020. "Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
  28. Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
  29. Calin-Cristian Cormos, 2018. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture," Energies, MDPI, vol. 11(11), pages 1-17, November.
  30. Xiang, Dong & Zhou, Yunpeng, 2018. "Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process," Applied Energy, Elsevier, vol. 229(C), pages 1024-1034.
  31. Du, Wang & Ma, Liping & Pan, Qinghuan & Dai, Quxiu & Zhang, Mi & Yin, Xia & Xiong, Xiong & Zhang, Wei, 2023. "Full-loop CFD simulation of lignite Chemical Looping Gasification with phosphogypsum as oxygen carrier using a circulating fluidized bed," Energy, Elsevier, vol. 262(PA).
  32. Chen, Zong & Zhang, Rongjun & Xia, Guofu & Wu, Yu & Li, Hongwei & Sun, Zhao & Sun, Zhiqiang, 2021. "Vacuum promoted methane decomposition for hydrogen production with carbon separation: Parameter optimization and economic assessment," Energy, Elsevier, vol. 222(C).
  33. Li, Chongcong & Liu, Rui & Zheng, Jinhao & Zhang, Yan, 2023. "Thermodynamic study on the effects of operating parameters on CaO-based sorption enhanced steam gasification of biomass," Energy, Elsevier, vol. 273(C).
  34. Chein, Rei-Yu & Hsu, Wen-Huai, 2020. "Thermodynamic equilibrium analysis of H2-rich syngas production via sorption-enhanced chemical looping biomass gasification," Renewable Energy, Elsevier, vol. 153(C), pages 117-129.
  35. Ma, Zhong & Liu, Guofu & Zhang, Hui & Zhang, Shuai & Lu, Yonggang, 2021. "Evaluation of pyrite cinders from sulfuric acid production as oxygen carrier for chemical looping combustion," Energy, Elsevier, vol. 233(C).
  36. Abdulrasheed, Abdulrahman & Jalil, Aishah Abdul & Gambo, Yahya & Ibrahim, Maryam & Hambali, Hambali Umar & Shahul Hamid, Muhamed Yusuf, 2019. "A review on catalyst development for dry reforming of methane to syngas: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 175-193.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.