IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v243y2025ics0960148125002198.html
   My bibliography  Save this article

Kinetics and experimental evaluation of hydrogen-rich synthesis gas from alkali lignin by chemical looping gasification with NiFe2O4 oxygen carrier

Author

Listed:
  • Wei, Guoqiang
  • Yao, Yecheng
  • Cao, Jinzeng
  • Yao, Weishan
  • Wu, Xiaoyan
  • Yang, Xixian
  • Yuan, Haoran
  • Wang, Lu
  • Song, Yuncai
  • Xie, Jun

Abstract

Chemical looping gasification (CLG) of alkali lignin with NiFe2O4 oxygen carrier was proposed to achieve hydrogen-rich syngas and realize the resource utilization of papermaking by-product, which exhibits advantages of cheaper oxygen source, lower reaction exergy loss, less tar content, and avoiding inert gas dilution in gas products. The kinetic behavior and reaction performance was evaluated by TG and fixed bed reactor coupled with thermal analysis kinetic of non-isothermal and heterogeneous systems. The results exhibited that the exogenous potassium alkali metal significantly reduced the average reaction activation energy from 182.62 kJ/mol to 142.16 kJ/mol and the CLG process conformed to the model of random nucleation and nuclear growth (n = 4). The presence of alkali metal and water molecules with the increasing temperature played a positive role in enhancing the CLG reaction process, adjusting the H2/CO ratio and improving the syngas yield and carbon conversion efficiency. Hydrogen-rich synthesis gas with H2 composition 57.67 %, LHV 13.28 MJ/m3, syngas yields 1.99 m3/kg, H2/CO 3.92 and carbon conversion 82.20 % was achieved in CLG of K-AAL with H2O molecular participation. The carbon conversion of K-AAL in CLG process is 28.78 % higher than that of AAL without alkali metal. The reaction path of NiFe2O4 oxygen carrier in CLG process was summarized as: NiFe2O4 → Fe0.5/Ni0.5 → Fe2O3/NiFe2O4. The CLG process is an effective way to prepare the synthesis gas for Fischer-Tropsch synthesis and realize the resource utilization of alkali lignin.

Suggested Citation

  • Wei, Guoqiang & Yao, Yecheng & Cao, Jinzeng & Yao, Weishan & Wu, Xiaoyan & Yang, Xixian & Yuan, Haoran & Wang, Lu & Song, Yuncai & Xie, Jun, 2025. "Kinetics and experimental evaluation of hydrogen-rich synthesis gas from alkali lignin by chemical looping gasification with NiFe2O4 oxygen carrier," Renewable Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002198
    DOI: 10.1016/j.renene.2025.122557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125002198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Ming & Yi, Yang & Wang, Shuzhong & Wang, Zhuliang & Du, Min & Pan, Jianfeng & Wang, Qian, 2018. "Review of hydrogen production using chemical-looping technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3186-3214.
    2. Ma, Mingyan & Xu, Donghai & Gong, Xuehan & Diao, Yunfei & Feng, Peng & Kapusta, Krzysztof, 2023. "Municipal sewage sludge product recirculation catalytic pyrolysis mechanism from a kinetic perspective," Renewable Energy, Elsevier, vol. 215(C).
    3. Ming Yang & Da Song & Yang Li & Jinzeng Cao & Guoqiang Wei & Fang He, 2023. "High-Quality Syngas Production by Chemical Looping Gasification of Bituminite Based on NiFe 2 O 4 Oxygen Carrier," Energies, MDPI, vol. 16(8), pages 1-17, April.
    4. Chongyan Ruan & Xijun Wang & Chaojie Wang & Lirong Zheng & Lin Li & Jian Lin & Xiaoyan Liu & Fanxing Li & Xiaodong Wang, 2022. "Selective catalytic oxidation of ammonia to nitric oxide via chemical looping," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Lin, Yan & Wang, Haitao & Fang, Shiwen & Huang, Zhen & Wei, Guoqiang & Zhang, Yongqi & Xia, Hongqiang & Zhao, Zengli & Huang, Hongyu, 2022. "Chemical looping combustion of lignite using iron ore: C-gas products (CO2, CO, CH4) and NOx emissions," Energy, Elsevier, vol. 256(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Wang, Xun & Fu, Genshen & Xiao, Bo & Xu, Tingting, 2022. "Optimization of nickel-iron bimetallic oxides for coproduction of hydrogen and syngas in chemical looping reforming with water splitting process," Energy, Elsevier, vol. 246(C).
    3. Yang, Jie & Dong, Senlin & Xie, Longgui & Cen, Qihong & Zheng, Dalong & Ma, Liping & Dai, Quxiu, 2023. "Analysis of hydrogen-rich syngas generation in chemical looping gasification of lignite: Application of carbide slag as the oxygen carrier, hydrogen carrier, and in-situ carbon capture agent," Energy, Elsevier, vol. 283(C).
    4. Calin-Cristian Cormos, 2018. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture," Energies, MDPI, vol. 11(11), pages 1-17, November.
    5. Yin, Fan & Sun, Liyan & Zeng, Dewang & Gao, Zixiang & Xiao, Rui, 2024. "Investigations on oxygen carriers derived from natural ores or industrial solid wastes for chemical looping hydrogen generation using biomass pyrolysis gas," Energy, Elsevier, vol. 293(C).
    6. Turap, Yusan & Wang, Zhentong & Wang, Yidi & Zhang, Zhe & Chen, Siyuan & Wang, Wei, 2023. "High purity hydrogen production via coupling CO2 reforming of biomass-derived gas and chemical looping water splitting," Applied Energy, Elsevier, vol. 331(C).
    7. Baroutaji, Ahmad & Wilberforce, Tabbi & Ramadan, Mohamad & Olabi, Abdul Ghani, 2019. "Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 31-40.
    8. Chein, Rei-Yu & Hsu, Wen-Huai, 2019. "Thermodynamic analysis of syngas production via chemical looping dry reforming of methane," Energy, Elsevier, vol. 180(C), pages 535-547.
    9. Lu, Chunqiang & Li, Kongzhai & Zhu, Xing & Wei, Yonggang & Li, Lei & Zheng, Min & Fan, Bingbing & He, Fang & Wang, Hua, 2020. "Improved activity of magnetite oxygen carrier for chemical looping steam reforming by ultrasonic treatment," Applied Energy, Elsevier, vol. 261(C).
    10. Huang, Jijiang & Liu, Wen & Hu, Wenting & Metcalfe, Ian & Yang, Yanhui & Liu, Bin, 2019. "Phase interactions in Ni-Cu-Al2O3 mixed oxide oxygen carriers for chemical looping applications," Applied Energy, Elsevier, vol. 236(C), pages 635-647.
    11. Yao, Yecheng & Wei, Guoqiang & Yuan, Haoran & Yang, Xixian & Huang, Zhen & Chen, Liangyong & Xie, Jun, 2025. "Investigation of chemical looping pyrolysis characteristics of biogas residue through experiments, kinetic modeling and machine learning," Energy, Elsevier, vol. 316(C).
    12. Jiang, Dianqiang & Zhang, Dalin & Li, Xinyu & Wang, Shibao & Wang, Chenglong & Qin, Hao & Guo, Yanwen & Tian, Wenxi & Su, G.H. & Qiu, Suizheng, 2022. "Fluoride-salt-cooled high-temperature reactors: Review of historical milestones, research status, challenges, and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Chen, Zong & Zhang, Rongjun & Xia, Guofu & Wu, Yu & Li, Hongwei & Sun, Zhao & Sun, Zhiqiang, 2021. "Vacuum promoted methane decomposition for hydrogen production with carbon separation: Parameter optimization and economic assessment," Energy, Elsevier, vol. 222(C).
    14. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    15. Chisalita, Dora-Andreea & Petrescu, Letitia & Cormos, Calin-Cristian, 2020. "Environmental evaluation of european ammonia production considering various hydrogen supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    16. Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
    17. Nurdiawati, Anissa & Zaini, Ilman Nuran & Irhamna, Adrian Rizqi & Sasongko, Dwiwahju & Aziz, Muhammad, 2019. "Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 369-381.
    18. Surywanshi, Gajanan Dattarao & Patnaikuni, Venkata Suresh & Vooradi, Ramsagar & Anne, Sarath Babu, 2021. "4-E and life cycle analyses of a supercritical coal direct chemical looping combustion power plant with hydrogen and power co-generation," Energy, Elsevier, vol. 217(C).
    19. Gao, Xin & Chen, Heng & Zheng, Hongxu & Zhang, Yixi & Wei, Lai & Pan, Peiyuan, 2025. "Performance assessment of a multiple generation system integrating sludge hydrothermal treatment with a small modular nuclear reactor power plant," Energy, Elsevier, vol. 315(C).
    20. Zhang, Haotian & Sun, Zhuxing & Hu, Yun Hang, 2021. "Steam reforming of methane: Current states of catalyst design and process upgrading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:243:y:2025:i:c:s0960148125002198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.