IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i23p6359-d454840.html
   My bibliography  Save this article

Evaluation of Hydrogen Yield Evolution in Gaseous Fraction and Biochar Structure Resulting from Walnut Shells Pyrolysis

Author

Listed:
  • Elena David

    (National Research and Development Institute for Cryogenics and Isotopic Technologies—ICSI Rm. Valcea, Street Uzinei, No.4, 240050 Rm. Valcea, Romania)

Abstract

Conversion experiments of wet and dry walnut shells were performed, the influence of moisture content on the hydrogen yield in the gas fraction was estimated and the resulted biochar structure was presented. Measurements of the biochar structures were performed using X-ray diffraction and scanning electron microscopy methods. The results demonstrate that heating rate played a key role in the pyrolysis process and influenced the biochar structure. Under fast heating rate, the interactions between the water vapors released and other intermediate products, such as biochar was enhanced and consequently more hydrogen was generated. It could also be observed that both biochar samples, obtained from wet and dry walnut shells, had an approximately smooth surface and are different from the rough surface of the raw walnut shell, but there are not obvious differences in shape and pores structure between the two biochar samples. The increasing of the biochar surface area versus pyrolysis temperature is due tothe formation of micropores in structure. The biochar shows a surface morphology in the form of particles with rough, compact and porous structure. In addition the biochar structure confirmed that directly pyrolysis of wet walnut shells without predried treatment has enhanced the hydrogen content in the gas fraction.

Suggested Citation

  • Elena David, 2020. "Evaluation of Hydrogen Yield Evolution in Gaseous Fraction and Biochar Structure Resulting from Walnut Shells Pyrolysis," Energies, MDPI, vol. 13(23), pages 1-17, December.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6359-:d:454840
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/23/6359/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/23/6359/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo, Ming & Yi, Yang & Wang, Shuzhong & Wang, Zhuliang & Du, Min & Pan, Jianfeng & Wang, Qian, 2018. "Review of hydrogen production using chemical-looping technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3186-3214.
    2. Hamad, Mohamed A. & Radwan, Aly M. & Heggo, Dalia A. & Moustafa, Tarek, 2016. "Hydrogen rich gas production from catalytic gasification of biomass," Renewable Energy, Elsevier, vol. 85(C), pages 1290-1300.
    3. Parthasarathy, Prakash & Narayanan, K. Sheeba, 2014. "Hydrogen production from steam gasification of biomass: Influence of process parameters on hydrogen yield – A review," Renewable Energy, Elsevier, vol. 66(C), pages 570-579.
    4. Fatih Demirbas, M., 2009. "Biorefineries for biofuel upgrading: A critical review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 151-161, November.
    5. Long, Yun-Duo & Fang, Zhen & Su, Tong-Chao & Yang, Qing, 2014. "Co-production of biodiesel and hydrogen from rapeseed and Jatropha oils with sodium silicate and Ni catalysts," Applied Energy, Elsevier, vol. 113(C), pages 1819-1825.
    6. Chen, Guanyi & Yao, Jingang & Liu, Jing & Yan, Beibei & Shan, Rui, 2016. "Biomass to hydrogen-rich syngas via catalytic steam reforming of bio-oil," Renewable Energy, Elsevier, vol. 91(C), pages 315-322.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hwang, Jae Gyu & Choi, Myung Kyu & Choi, Dong Hyuk & Choi, Hang Seok, 2021. "Quality improvement and tar reduction of syngas produced by bio-oil gasification," Energy, Elsevier, vol. 236(C).
    2. Couto, Nuno Dinis & Silva, Valter Bruno & Monteiro, Eliseu & Rouboa, Abel & Brito, Paulo, 2017. "An experimental and numerical study on the Miscanthus gasification by using a pilot scale gasifier," Renewable Energy, Elsevier, vol. 109(C), pages 248-261.
    3. Nguyen, Nhut M. & Alobaid, Falah & Epple, Bernd, 2021. "Chemical looping gasification of torrefied woodchips in a bubbling fluidized bed test rig using iron-based oxygen carriers," Renewable Energy, Elsevier, vol. 172(C), pages 34-45.
    4. Situmorang, Yohanes Andre & Zhao, Zhongkai & An, Ping & Yu, Tao & Rizkiana, Jenny & Abudula, Abuliti & Guan, Guoqing, 2020. "A novel system of biomass-based hydrogen production by combining steam bio-oil reforming and chemical looping process," Applied Energy, Elsevier, vol. 268(C).
    5. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    6. Huang, Xiaoyuan & Cheng, Dang-guo & Chen, Fengqiu & Zhan, Xiaoli, 2016. "Reaction pathways of hemicellulose and mechanism of biomass pyrolysis in hydrogen plasma: A density functional theory study," Renewable Energy, Elsevier, vol. 96(PA), pages 490-497.
    7. Aboagye, D. & Banadda, N. & Kiggundu, N. & Kabenge, I., 2017. "Assessment of orange peel waste availability in ghana and potential bio-oil yield using fast pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 814-821.
    8. Bharathiraja, B. & Jayamuthunagai, J. & Sudharsanaa, T. & Bharghavi, A. & Praveenkumar, R. & Chakravarthy, M. & Yuvaraj, D., 2017. "Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 788-807.
    9. José Juan Alvarado-Flores & Jorge Víctor Alcaraz-Vera & María Liliana Ávalos-Rodríguez & Erandini Guzmán-Mejía & José Guadalupe Rutiaga-Quiñones & Luís Fernando Pintor-Ibarra & Santiago José Guevara-M, 2024. "Thermochemical Production of Hydrogen from Biomass: Pyrolysis and Gasification," Energies, MDPI, vol. 17(2), pages 1-21, January.
    10. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    11. Wang, Yi-Tong & Fang, Zhen & Yang, Xing-Xia, 2017. "Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid," Applied Energy, Elsevier, vol. 204(C), pages 702-714.
    12. Sánchez, S. & Lozano, L.J. & Godínez, C. & Juan, D. & Pérez, A. & Hernández, F.J., 2010. "Carob pod as a feedstock for the production of bioethanol in Mediterranean areas," Applied Energy, Elsevier, vol. 87(11), pages 3417-3424, November.
    13. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    15. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    16. Wang, Xun & Fu, Genshen & Xiao, Bo & Xu, Tingting, 2022. "Optimization of nickel-iron bimetallic oxides for coproduction of hydrogen and syngas in chemical looping reforming with water splitting process," Energy, Elsevier, vol. 246(C).
    17. Banerjee, Debarun & Kushwaha, Nidhi & Shetti, Nagaraj P. & Aminabhavi, Tejraj M. & Ahmad, Ejaz, 2022. "Green hydrogen production via photo-reforming of bio-renewable resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Haroldo Jorge da Silva Ribeiro & Armando Costa Ferreira & Caio Campos Ferreira & Lia Martins Pereira & Marcelo Costa Santos & Lauro Henrique Hamoy Guerreiro & Fernanda Paula da Costa Assunção & Sílvio, 2024. "Depolymerization of PMMA-Based Dental Resin Scraps on Different Production Scales," Energies, MDPI, vol. 17(5), pages 1-25, March.
    19. Calin-Cristian Cormos, 2018. "Techno-Economic Evaluations of Copper-Based Chemical Looping Air Separation System for Oxy-Combustion and Gasification Power Plants with Carbon Capture," Energies, MDPI, vol. 11(11), pages 1-17, November.
    20. Theodore Dickerson & Juan Soria, 2013. "Catalytic Fast Pyrolysis: A Review," Energies, MDPI, vol. 6(1), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:23:p:6359-:d:454840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.