IDEAS home Printed from https://ideas.repec.org/r/eee/rensus/v81y2018ip1p353-365.html
   My bibliography  Save this item

Advances in vapor compression air source heat pump system in cold regions: A review

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Le, Khoa Xuan & Huang, Ming Jun & Wilson, Christopher & Shah, Nikhilkumar N. & Hewitt, Neil J., 2020. "Tariff-based load shifting for domestic cascade heat pump with enhanced system energy efficiency and reduced wind power curtailment," Applied Energy, Elsevier, vol. 257(C).
  2. Mohamed, Elamin & Riffat, Saffa & Omer, Siddig & Zeinelabdein, Rami, 2019. "A comprehensive investigation of using mutual air and water heating in multi-functional DX-SAMHP for moderate cold climate," Renewable Energy, Elsevier, vol. 130(C), pages 582-600.
  3. Wansheng Yang & Bin Zeng & Yanmei Zhang & Song He & Xudong Zhao, 2018. "Frosting Performance of a Nanoporous Hydrophilic Aluminum Surface," Energies, MDPI, vol. 11(12), pages 1-17, December.
  4. Cao, Jingyu & Zheng, Ling & Peng, Jinqing & Wang, Wenjie & Leung, Michael K.H. & Zheng, Zhanying & Hu, Mingke & Wang, Qiliang & Cai, Jingyong & Pei, Gang & Ji, Jie, 2023. "Advances in coupled use of renewable energy sources for performance enhancement of vapour compression heat pump: A systematic review of applications to buildings," Applied Energy, Elsevier, vol. 332(C).
  5. Fang, Yujuan & Chen, Laijun & Mei, Shengwei & Wei, Wei & Huang, Shaowei & Liu, Feng, 2019. "Coal or electricity? An evolutionary game approach to investigate fuel choices of urban heat supply systems," Energy, Elsevier, vol. 181(C), pages 107-122.
  6. Le, Khoa Xuan & Huang, Ming Jun & Shah, Nikhilkumar N. & Wilson, Christopher & Artain, Paul Mac & Byrne, Raymond & Hewitt, Neil J., 2019. "Techno-economic assessment of cascade air-to-water heat pump retrofitted into residential buildings using experimentally validated simulations," Applied Energy, Elsevier, vol. 250(C), pages 633-652.
  7. Myeong Gil Jeong & Dhanushka Rathnayake & Hong Seok Mun & Muhammad Ammar Dilawar & Kwang Woo Park & Sang Ro Lee & Chul Ju Yang, 2020. "Effect of a Sustainable Air Heat Pump System on Energy Efficiency, Housing Environment, and Productivity Traits in a Pig Farm," Sustainability, MDPI, vol. 12(22), pages 1-13, November.
  8. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
  9. Jia, Teng & Dou, Pengbo & Chu, Peng & Dai, Yanjun, 2020. "Proposal and performance analysis of a novel solar-assisted resorption-subcooled compression hybrid heat pump system for space heating in cold climate condition," Renewable Energy, Elsevier, vol. 150(C), pages 1136-1150.
  10. Zhang, Yongyu & Gao, Ran & Si, Pengfei & Shi, Lijun & Shang, Yinghui & Wang, Yi & Liu, Boran & Du, Xueqing & Zhao, Kejie & Li, Angui, 2023. "Study on performances of heat-oxygen coupling device for high-altitude environments," Energy, Elsevier, vol. 272(C).
  11. Shuxue, Xu & Yueyue, Wang & Jianhui, Niu & Guoyuan, Ma, 2020. "‘Coal-to-electricity’ project is ongoing in north China," Energy, Elsevier, vol. 191(C).
  12. Muhsin Kılıç, 2022. "Evaluation of Combined Thermal–Mechanical Compression Systems: A Review for Energy Efficient Sustainable Cooling," Sustainability, MDPI, vol. 14(21), pages 1-38, October.
  13. Shi, Peng & Wang, Lin-Shu & Schwartz, Paul & Hofbauer, Peter, 2020. "State-wide comparative analysis of the cost saving potential of Vuilleumier heat pumps in residential houses," Applied Energy, Elsevier, vol. 277(C).
  14. Zhang, Xi & Hu, Bin & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Performance enhancement of hybrid absorption-compression heat pump via internal heat recovery," Energy, Elsevier, vol. 286(C).
  15. Onder Kul & Mehmet Nurettin Uğural, 2022. "Comparative Economic and Experimental Assessment of Air Source Heat Pump and Gas-fired boiler: A Case Study from Turkey," Sustainability, MDPI, vol. 14(21), pages 1-17, November.
  16. Yang, Zhiyao & Qu, Ming & Gluesenkamp, Kyle R., 2020. "Design screening and analysis of gas-fired ammonia-based chemisorption heat pumps for space heating in cold climate," Energy, Elsevier, vol. 207(C).
  17. You, Tian & Wu, Wei & Yang, Hongxing & Liu, Jiankun & Li, Xianting, 2021. "Hybrid photovoltaic/thermal and ground source heat pump: Review and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  18. Vering, Christian & Kroppa, Hendrik & Venzik, Valerius & Streblow, Rita & Müller, Dirk, 2022. "Towards an integral decision-making process applied to the refrigerant selection in heat pumps," Renewable Energy, Elsevier, vol. 192(C), pages 815-827.
  19. Wang, Zhihua & Wang, Fenghao & Ma, Zhenjun & Lin, Wenye & Ren, Haoshan, 2019. "Investigation on the feasibility and performance of transcritical CO2 heat pump integrated with thermal energy storage for space heating," Renewable Energy, Elsevier, vol. 134(C), pages 496-508.
  20. Zhongbao Liu & Fengfei Lou & Xin Qi & Yiyao Shen, 2020. "Enhancing Heating Performance of Low-Temperature Air Source Heat Pumps Using Compressor Casing Thermal Storage," Energies, MDPI, vol. 13(12), pages 1-18, June.
  21. Jing, Siqi & Chen, Qi & Yu, Jianlin, 2024. "Analysis of an ejector-assisted flash tank vapor injection heat pump cycle with dual evaporators for dryer application," Energy, Elsevier, vol. 286(C).
  22. Jia, Teng & Dai, Enqian & Dai, Yanjun, 2019. "Thermodynamic analysis and optimization of a balanced-type single-stage NH3-H2O absorption-resorption heat pump cycle for residential heating application," Energy, Elsevier, vol. 171(C), pages 120-134.
  23. Gao, Peng & Shao, Liang-Liang & Zhang, Chun-Lu, 2019. "Pressure boost thermochemical sorption heat pump cycle," Energy, Elsevier, vol. 169(C), pages 1090-1100.
  24. Zhihua Wang & Yujia Zhang & Fenghao Wang & Guichen Li & Kaiwen Xu, 2021. "Performance Optimization and Economic Evaluation of CO 2 Heat Pump Heating System Coupled with Thermal Energy Storage," Sustainability, MDPI, vol. 13(24), pages 1-22, December.
  25. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  26. Lin, Ying & Fan, Yubin & Yu, Meng & Jiang, Long & Zhang, Xuejun, 2022. "Performance investigation on an air source heat pump system with latent heat thermal energy storage," Energy, Elsevier, vol. 239(PA).
  27. Li, Xianting & Lyu, Weihua & Ran, Siyuan & Wang, Baolong & Wu, Wei & Yang, Zixu & Jiang, Sihang & Cui, Mengdi & Song, Pengyuan & You, Tian & Shi, Wenxing, 2020. "Combination principle of hybrid sources and three typical types of hybrid source heat pumps for year-round efficient operation," Energy, Elsevier, vol. 193(C).
  28. Zhou, Chaohui & Ni, Long & Wang, Jun & Yao, Yang, 2020. "Investigation on the performance of ASHP heating system using frequency-conversion technique based on a temperature and hydraulic-balance control strategy," Renewable Energy, Elsevier, vol. 147(P1), pages 141-154.
  29. Dan Dan & Yihang Zhao & Mingshan Wei & Xuehui Wang, 2023. "Review of Thermal Management Technology for Electric Vehicles," Energies, MDPI, vol. 16(12), pages 1-38, June.
  30. Jesper, Mateo & Schlosser, Florian & Pag, Felix & Walmsley, Timothy Gordon & Schmitt, Bastian & Vajen, Klaus, 2021. "Large-scale heat pumps: Uptake and performance modelling of market-available devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  31. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Liu, Zichu, 2022. "Performance and optimization of a novel solar-air source heat pump building energy supply system with energy storage," Applied Energy, Elsevier, vol. 324(C).
  32. Wang, Jijin & Qv, Dehu & Yao, Yang & Ni, Long, 2021. "The difference between vapor injection cycle with flash tank and intermediate heat exchanger for air source heat pump: An experimental and theoretical study," Energy, Elsevier, vol. 221(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.