IDEAS home Printed from https://ideas.repec.org/r/eee/phsmap/v387y2008i23p5818-5825.html
   My bibliography  Save this item

Scaling in the distribution of intertrade durations of Chinese stocks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Li, Ming-Xia & Jiang, Zhi-Qiang & Xie, Wen-Jie & Xiong, Xiong & Zhang, Wei & Zhou, Wei-Xing, 2015. "Unveiling correlations between financial variables and topological metrics of trading networks: Evidence from a stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 575-584.
  2. Yoshimura, Yushi & Okuda, Hiroshi & Chen, Yu, 2020. "A mathematical formulation of order cancellation for the agent-based modelling of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 538(C).
  3. Ren, Fei & Gu, Gao-Feng & Zhou, Wei-Xing, 2009. "Scaling and memory in the return intervals of realized volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(22), pages 4787-4796.
  4. Ren, Fei & Guo, Liang & Zhou, Wei-Xing, 2009. "Statistical properties of volatility return intervals of Chinese stocks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(6), pages 881-890.
  5. Martin Magris & Jiyeong Kim & Esa Rasanen & Juho Kanniainen, 2017. "Long-range Auto-correlations in Limit Order Book Markets: Inter- and Cross-event Analysis," Papers 1711.03534, arXiv.org.
  6. Kang, Sang Hoon & Cheong, Chongcheul & Yoon, Seong-Min, 2010. "Long memory volatility in Chinese stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(7), pages 1425-1433.
  7. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
  8. V. Filimonov & D. Sornette, 2015. "Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1293-1314, August.
  9. Hai-Chuan Xu & Wei-Xing Zhou, 2020. "Modeling aggressive market order placements with Hawkes factor models," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-12, January.
  10. Răzvan-Cornel Sfetcu & Sorina-Cezarina Sfetcu & Vasile Preda, 2021. "Ordering Awad–Varma Entropy and Applications to Some Stochastic Models," Mathematics, MDPI, vol. 9(3), pages 1-15, January.
  11. Jiang, Zhi-Qiang & Chen, Wei & Zhou, Wei-Xing, 2009. "Detrended fluctuation analysis of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(4), pages 433-440.
  12. Răzvan-Cornel Sfetcu & Vasile Preda, 2024. "Order Properties Concerning Tsallis Residual Entropy," Mathematics, MDPI, vol. 12(3), pages 1-16, January.
  13. Răzvan-Cornel Sfetcu & Vasile Preda, 2023. "Fractal Divergences of Generalized Jacobi Polynomials," Mathematics, MDPI, vol. 11(16), pages 1-12, August.
  14. Can Yilmaz Altinigne & Harun Ozkan & Veli Can Kupeli & Zehra Cataltepe, 2019. "An Empirical Study on Arrival Rates of Limit Orders and Order Cancellation Rates in Borsa Istanbul," Papers 1909.08308, arXiv.org.
  15. Du, Bian & Zhu, Hongliang & Zhao, Jingdong, 2016. "Optimal execution in high-frequency trading with Bayesian learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 767-777.
  16. Zhi-Qiang Jiang & Askery Canabarro & Boris Podobnik & H. Eugene Stanley & Wei-Xing Zhou, 2016. "Early warning of large volatilities based on recurrence interval analysis in Chinese stock markets," Quantitative Finance, Taylor & Francis Journals, vol. 16(11), pages 1713-1724, November.
  17. Peng, Zhe & Xiong, Kainan & Yang, Yahui, 2024. "Microstructure of the Chinese stock market: A historical review," Pacific-Basin Finance Journal, Elsevier, vol. 88(C).
  18. Niu, Hongli & Wang, Weiqing & Zhang, Junhuan, 2019. "Recurrence duration statistics and time-dependent intrinsic correlation analysis of trading volumes: A study of Chinese stock indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 838-854.
  19. Gao-Feng Gu & Xiong Xiong & Hai-Chuan Xu & Wei Zhang & Yongjie Zhang & Wei Chen & Wei-Xing Zhou, 2021. "An empirical behavioral order-driven model with price limit rules," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-24, December.
  20. Niu, Hongli & Wang, Jun, 2017. "Return volatility duration analysis of NYMEX energy futures and spot," Energy, Elsevier, vol. 140(P1), pages 837-849.
  21. Plamen Ch Ivanov & Ainslie Yuen & Pandelis Perakakis, 2014. "Impact of Stock Market Structure on Intertrade Time and Price Dynamics," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-14, April.
  22. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
  23. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
  24. Zhang, Ting & Gu, Gao-Feng & Zhou, Wei-Xing, 2019. "Order imbalances and market efficiency: New evidence from the Chinese stock market," Emerging Markets Review, Elsevier, vol. 38(C), pages 458-467.
  25. Vladimir Filimonov & Didier Sornette, 2013. "Apparent criticality and calibration issues in the Hawkes self-excited point process model: application to high-frequency financial data," Papers 1308.6756, arXiv.org, revised Jul 2014.
  26. Song, Dong-Ming & Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2009. "Statistical properties of world investment networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(12), pages 2450-2460.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.