IDEAS home Printed from https://ideas.repec.org/r/eee/mateco/v16y1987i2p147-156.html
   My bibliography  Save this item

Some results on the existence of utility functions on path connected spaces

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mehta, Ghanshyam B. & Monteiro, Paulo Klinger, 1996. "Infinite-dimensional utility representation theorems," Economics Letters, Elsevier, vol. 53(2), pages 169-173, November.
  2. Inoue, Tomoki, 2010. "A utility representation theorem with weaker continuity condition," Journal of Mathematical Economics, Elsevier, vol. 46(1), pages 122-127, January.
  3. Herden, G. & Mehta, G. B., 2004. "The Debreu Gap Lemma and some generalizations," Journal of Mathematical Economics, Elsevier, vol. 40(7), pages 747-769, November.
  4. O'Callaghan, Patrick, 2016. "Measuring utility without mixing apples and oranges and eliciting beliefs about stock prices," MPRA Paper 69363, University Library of Munich, Germany.
  5. Arias de Reyna, Juan & Estévez Toranzo, Margarita & Hervés Beloso, Carlos, 1993. "On non representable preferences," UC3M Working papers. Economics 2894, Universidad Carlos III de Madrid. Departamento de Economía.
  6. Carlos Hervés-Beloso & Emma Moreno-García, 2025. "Consistent representations of preferences," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 13(1), pages 55-67, April.
  7. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
  8. Mabrouk, Mohamed, 2009. "On the extension of a preorder under translation invariance," MPRA Paper 15407, University Library of Munich, Germany.
  9. Carlos Alós-Ferrer & Klaus Ritzberger, 2015. "On the characterization of preference continuity by chains of sets," Economic Theory Bulletin, Springer;Society for the Advancement of Economic Theory (SAET), vol. 3(2), pages 115-128, October.
  10. Estévez Toranzo, Margarita & Hervés Beloso, Carlos & López López, Miguel A., 1993. "Una nota sobre la representación numérica de relaciones de preferencia," DES - Documentos de Trabajo. Estadística y Econometría. DS 2941, Universidad Carlos III de Madrid. Departamento de Estadística.
  11. Rustichini, Aldo & Siconolfi, Paolo, 2014. "Dynamic theory of preferences: Habit formation and taste for variety," Journal of Mathematical Economics, Elsevier, vol. 55(C), pages 55-68.
  12. Toranzo, Margarita Estevez & Beloso, Carlos Herves, 1995. "On the existence of continuous preference orderings without utility representations," Journal of Mathematical Economics, Elsevier, vol. 24(4), pages 305-309.
  13. Gori, Michele & Pianigiani, Giulio, 2010. "On the Arrow-Hahn utility representation method," Mathematical Social Sciences, Elsevier, vol. 59(3), pages 282-287, May.
  14. Candeal, Juan C. & Herves, Carlos & Indurain, Esteban, 1998. "Some results on representation and extension of preferences," Journal of Mathematical Economics, Elsevier, vol. 29(1), pages 75-81, January.
  15. Banerjee, Kuntal & Mitra, Tapan, 2018. "On Wold’s approach to representation of preferences," Journal of Mathematical Economics, Elsevier, vol. 79(C), pages 65-74.
  16. Inoue, Tomoki, 2011. "A utility representation theorem with weaker continuity condition," Center for Mathematical Economics Working Papers 401, Center for Mathematical Economics, Bielefeld University.
  17. Jacques Durieu & Hans Haller & Nicolas Querou & Philippe Solal, 2008. "Ordinal Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(02), pages 177-194.
  18. Elvio Accinelli, 1999. "Existence of GE: Are the Cases of Non Existence a Cause of Serious Worry?," Documentos de Trabajo (working papers) 0999, Department of Economics - dECON.
  19. Candeal, Juan C. & Indurain, Esteban & Mehta, Ghanshyam B., 2004. "Utility functions on locally connected spaces," Journal of Mathematical Economics, Elsevier, vol. 40(6), pages 701-711, September.
  20. Toranzo, Margarita Estevez & Garcia-Cutrin, Javier & Lopez Lopez, Miguel A., 1995. "A note on the representation of preferences," Mathematical Social Sciences, Elsevier, vol. 29(3), pages 255-262, June.
  21. Bosi, Gianni & Candeal, Juan Carlos & Indurain, Esteban, 2000. "Continuous representability of homothetic preferences by means of homogeneous utility functions," Journal of Mathematical Economics, Elsevier, vol. 33(3), pages 291-298, April.
  22. Hervés-Beloso, C. & Monteiro, P.K., 2010. "Strictly monotonic preferences on continuum of goods commodity spaces," Journal of Mathematical Economics, Elsevier, vol. 46(5), pages 725-727, September.
  23. Beardon, Alan F. & Candeal, Juan C. & Herden, Gerhard & Indurain, Esteban & Mehta, Ghanshyam B., 2002. "The non-existence of a utility function and the structure of non-representable preference relations," Journal of Mathematical Economics, Elsevier, vol. 37(1), pages 17-38, February.
  24. Caserta, A. & Giarlotta, A. & Watson, S., 2008. "Debreu-like properties of utility representations," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1161-1179, December.
  25. Lumley, Thomas & Gillen, Daniel L., 2016. "Characterising transitive two-sample tests," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 118-123.
  26. Campion, Maria J. & Candeal, Juan C. & Indurain, Esteban, 2006. "The existence of utility functions for weakly continuous preferences on a Banach space," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 227-237, March.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.